Association Rule Classifiers

Tomas Kliegr
PhD candidate

Multimedia and Vision Research Group
Queen Mary
University of London

Machine Learning and Modelling Seminar ofe
at the Charles University in Prague \E, J [\/I\/N
April 9, 2015 T

Queen Mary N

Jultimedia and Vision Research Gro
Univessity of London Vultimedia Vision Research Group



Outline

Classification based on associations

In detail description of the CBA algorithm. The presentation uses

excerpts from the original pseudocode published by Liu et al
(1998) in [1].

Business Rule CBA

e Simplified version of CBA

* The effect of higher rule expressiveness (disjunctions, negations)
on classifier accuracy

e Effect of rule pruning

* On going work

* Limitations of CBA (and association rule classifiers in general)
* Proposed solution

* Experimental results



Classification Association Rule Mining

1. Rule Generator: typically Apriori-like algorithm
2. Classifier Builder
1. Prune rules
2. Sort rules
3. Predict
1. Apply matching rules: select either the top matching rule or all
matching rules

CBA - Bing Liu, Wynne Hsu, Yiming. Classification Based on Associations - Integrating
Classification and Association Rule Mining. ACM KDD 98 conference. AAAI
15t CARM algorithm

Follow up:

CMAR - Li, Wenmin, Jiawei Han, and Jian Pei. CMAR: Accurate and efficient classification
based on multiple class-association rules. Data Mining, 2001. ICDM’01, IEEE, 2001.
MMAC - Thabtah, Fadi A., Peter Cowling, and Yonghong Peng. MMAC: A new multi-class,
multi-label associative classification approach. Data Mining, 2004. ICDM'04. IEEE, 2004.
CPAR,...



Classification based on associations (CBA)

Bing Liu, Wynne Hsu, Yiming. Classification Based on Associations - Integrating Classification
and Association Rule Mining. KDD 98 conference. AAAI

Implementations:
http://www.cs.uic.edu/~liub/

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html

1. Rule Generator

* Mining of Class Association Rules based on Apriori
2. Classifier Builder

* M1 - many passes over the data
1. Sort Rules (conf, supp, length)

2. Data coverage pruning — many passes over data
3. Default rule pruning

M2 — find best rule for each data case
* Optimized version of data coverage pruning


http://www.cs.uic.edu/~liub/
http://www.cs.uic.edu/~liub/
http://www.cs.uic.edu/~liub/
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html

Classification based on associations (CBA)

1. Rule Generator

Mining of Class Association Rules based on
Apriori

2. Classifier Builder

M1 — many passes over the data
1. Sort Rules (conf, supp, length)
2. Data coverage pruning —many passes over
data
3. Default rule pruning

M2 — find best rule for each data case
* Optimized version —slightly more than one
pass over data

Both M1 and M2 preserve Condition 1
and Condition 2

CONDITION 1

Each training case is
covered by the rule with
the highest precedence
over other rules covering
the case.

CONDITION 2
Every rule in the classifier
correctly classifies at least
one training case.



CBA — Basic notions

* ltem — (attribute, value)
* |tem set —set of items
* Large itemset — itemset meeting minSupp threshold

* Input data: A relational table D with n attributes
— Continuous attributes need to be discretized

* Let &bg)tp’e)?e&ofjjl 'étems in D

* Let Y be the set of class labels

e Let Y be a classification association rule
(CAR)
* Rightjhagdside of the association rule is restricted to the target
attribute

* Rule is associated with confidence and support



Classification based on associations (CBA)

1. Rule Generator

Mining of Class Association Rules based on
Apriori

2. Classifier Builder

M1 — many passes over the data
1. Sort Rules (conf, supp, length)
2. Data coverage pruning —many passes over
data
3. Default rule pruning

M2 — find best rule for each data case
* Optimized version —slightly more than one
pass over data

Both M1 and M2 preserve Condition 1
and Condition 2

CONDITION 1

Each training case is
covered by the rule with
the highest precedence
over other rules covering
the case.

CONDITION 2
Every rule in the classifier
correctly classifies at least
one training case.



Generating the complete set of CARs

Two parameters: minimum support,eminimum confidence
ruleitem: <condset, y>

where condset is a set of items,y Y is a class [abel
where (A,1) is an attribute value pair

<{(A, 1), (B, 1)}, (class, 1)>

Example 2-ruleitem Rule item =~ rule

k-ruleitem
rule item whose condset has k items
frequent (large) rule item

a ruleitem with support above minSup



CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2  CAR, =genRules(F));

3  prCAR, = pruneRules(CAR)); In the first pass, the algorithm
4 for (k=2.F,_ #D; k++) do computes the support of

5 C, = candidateGen(F, )); individual rule items and

6 for each data case d € D do discards rule items which are
7 C, = ruleSubset(C,, d); infrequent.

8 for each candidate c € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++

11 end

12 end

13 F, = {c € C, I c.rulesupCount = minsup };

14 CAR, = genRules(F);

15 prCAR, = pruneRules(CAR,);
16 end

17 CARs=U,CAR;;

18 prCARs =, prCAR,;

Source: [1]



CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems}; determine frequent/large 1-rule items (count class and

2 CAR, = genRules(F)); item occurrences)

3  prCAR, = pruneRules(CAR ));

4 for(k=2;F,  #9; k++)do

5 C, = candidateGen(F, ));

6 for each datacased € D do

7 C,=ruleSubset(C,, d);

8 for each candidate ¢ € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++

11 end

12 end Example 1-ruleitem

13 F, = {c € C_ | c.rulesupCount = minsup}; |<{(A 1) (B,1)}, (class, 1)>

14 CAR, = genRules(F)); - support = 20% = 2/10

15 prCAR, = pruneRules(CAR,); - confidence = 66.7% = 2/

16 end

17 CARs=U,CAR; F,

18 prCARs =U, prCAR,;, | Denotes the set of frequent k-rule items
The elements of this set have the following form:

Source: [1] <(condset, condsupCount), (y, ) >

<({a, 1) (B,1)}, 3), ((class, 1), ) >




Generating the complete set of CARs

1 F, ={large l-ruleitems};

2 CAR, =genRules(F); For all ruleitems with the same condset,
3  prCAR, = pruneRules(CAR,);  the ruleitem with the highest confidence
4 for (k=2;F_ #3; k++) do is chosen as the possible rule (random
5 C, = candidateGen(F, )); draw in case of a tie).

6 for each data case d € D do

7 C,=ruleSubset(C,, d);

8 for each candidate ¢ € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++

11 end

12 end

13 F_={c € C, | c.rulesupCount = minsup },

14 CAR, = genRules(F);

15 prCAR, = pruneRules(CAR,);
16 end

17 CARs =U CAR;;

18 prCARs =U, prCAR;

RI<{ (7, 1), (B, 1)}, (class,
ruleSupCount =2, condSupCount =3
R2<{ (A, 1), (B, 1)}, (class,
ruleSupCount =1, condSupCount =3

1) >,

2) >,

Source: [1]

Note: In the genRules step, the description in [1] is not entirely

clear to me

We get one possible rule: R1
with confidence 67%




CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, =genRules(F));

3  prCAR, = pruneRules(CAR)); optional pessimistic rule pruning as in C4.5 [5]

4 for(k=2.F,  #9; k++) do

5 C, = candidateGen(F, ));

6 for each datacase d € D do Pessimist pruning:

7 C,=ruleSubset(C,, d); 1. Try to remove one

8 for each candidate ¢ € C,do condition (item) from

9 c.condsupCount++; condset of r

10 if d.class = c.class then c.rulesupCount++ [ZASRERIERENSTE [ RIRE

11 end pessimistic error rate of

12 end the original rule is higher

13 F = {c € C, | c.rulesupCount = minsup }; than that of the pruned

14 CAR, = genRules(F)); rule.

15 prCAR_= pruneRules(CAR,); rule pruning

16 end

17 CARs=U,_CAR;;

18 prCARs =, prCAR;; Experimental results in [1] show

that pessimistic pruning reduces
Source: [1] number of rules in the classifier
and has no effect on accuracy




CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, =genRules(F));

3  prCAR, = pruneRules(CAR );

4 for (k=2 F,, #J; k++) do subsequent passes of the CBA-RG
5 C, = candidateGen(F, ));

6 for each data case d € D do

7 C,=ruleSubset(C,, d);

8 for each candidate ¢ € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++
11 end

12 end

13 F = {c € C, | c.rulesupCount = minsup };

14 CAR, = genRules(F));

15 prCAR, = pruneRules(CAR,);
16 end

17 CARs=U,_CAR;;

18 prCARs =, prCAR,;

Source: [1]



CBA — Rule Generation (CBA-RG)

O 0 I B W=

10
11
12
13
14
15
16
17

18

Source: [1]

F, = {large l-ruleitems};
CAR, = genRules(F));
prCAR, = pruneRules(CAR));
for (k=2; F,, # 3 k++) do
C, = candidateGen(F, )); same principle as aprioriGen [4]
for each datacase d € D do
C .= ruleSubset(C,, d);
for each candidate ¢ € C,do
c.condsupCount++;
if d.class = c.class then c.rulesupCount++
end
end
F = {c € C, | c.rulesupCount = minsup }; aprioriGen
CAR, = genRules(F)); It takes as argument the set of
prCAR_= pruneRules(CAR); all (k-1) itemsets. It
end returns a superset of the set
CARs =, CAR; of all large k-itemsets.
prCARs =, prCAR,; These are
as they are possibly
large




aprioriGen

Takes as argument the set of all large (k-1) itemsets and returns a superset of
the set of all frequent k-itemsets.

* 1.joinstep
* 2. prune step



aprioriGen — join step

insert into C,
select p.item,, p.1item,,.., p.1item,_,, g.ltem,_;
from F,_;, p, F.; g

where p.item; = g.itemy,.., p.1tem,, = g.item,_
,yp.1tem,; < g.item,_;

Fk—l Ck
{1,2,3—> {1,2,3,4}
(1,2, {1,2,3,5)
{1,2,5) {12.45)
{1,3,5) {2,3,4.5)
{2,3,4)

{2,3,5)

{3,4.5)




aprioriGen — join step

insert into C,
select p.item,, p.1item,,.., p.1item,_,, g.ltem,_;
from F,_;, p, F.; g

where p.item; = g.itemy,.., p.1tem,, = g.item,_
,yp.1tem,; < g.item,_;

Fk—l Ck
{1,2,3 {1,2,3,4}
{1,2,4§\{1,2,3,5}
{1,2,5}/{1,2,4,5}
{1,3,5} {2,3,4,5}
{2,3,4)

{2,3,5)

{3,4,5)




aprioriGen — join step

insert into C,

select p.item,, p.1item,,..
from F, , p, F_; g
where p.item; = g.itemy, ..

,yp.1tem,; < g.item,_;

Fk—l Ck
{1,2,3} {1,2,3,4}
{1,2,4} {1,2,3,5}
(12511245
{1,3,5} {2,3,4,5}
{2,3,4}

{2,3,5}

{3,4,5}

/

4

p.1tem,_q,

g.ltem,_,

p.item, _, = g.item,_



aprioriGen — join step

insert into C,

select p.itemy,

Froi Pr Fyr g
where p.item; =
,yp.1tem,; < g.item,_;

from

p.ltem,, ..,

g.ltemy, ..,

Froq

{1,2,3}
{1,2,4}
{1,2,5}
{1,3,5}
{2,3,4}
{2,3,5}
{3,4,5}

Ck

{1,2,3,4}
{1,2,3,5}
{1,2,4,5}

7 {2,3,4,5}

p.ltem,._,, g.ltem,_;

p.item, , = g.ltem,_



aprioriGen — join step

insert into C,

select p.item,, p.1item,,..
from F, , p, F_; g
where p.item; = g.itemy, ..

,yp.1tem,; < g.item,_;

Fk—l Ck
{1,2,3} {1,2,3,4}
{1,2,4} {1,2,3,5}
(12511245
{1,3,5} {2,3,4,5}
{2,3,4}

{2,3,5}

{3,4,5}

/

4

p.1tem,_q,

g.ltem,_,

p.item, , = g.ltem,_



aprioriGen — prune step

Remove itemsets that can’t possibly have the possible support because there is a
subset in it which doesn’t have the level of support i.e. not in the previous pass
(k-1).

Fk—l Ck
{1,2,3} 23
{1,2,4} {1,2,3,5}
{1,2,5} {1,2,4,5}
{1,3,5} {2,3,4,5}
{2,3,4}

{2,3,5}

{3,4,5}

Itemset {1,3,4} not in F,,



CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, =genRules(F));

3  prCAR, = pruneRules(CAR );

4 for(k=2.F,  #9; k++) do

5 C, = candidateGen(F, ));

6 for each data case d € D do

7 C,=ruleSubset(C,, d): ruleSubset() returns all the ruleitems in C,
8 for each candidate ¢ € C,do whose condsets are supported by d.
9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++

11 end

12 end

13 F = {c € C, | c.rulesupCount = minsup };

14 CAR, = genRules(F));

15 prCAR, = pruneRules(CAR,);
16 end

17 CARs=U,_CAR;;

18 prCARs =, prCAR,;

Source: [1]



CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, =genRules(F));

3  prCAR, = pruneRules(CAR );

4 for (k=2; Fk;l # O k++) do This implies many scans of the
S Ck = candldateGen(Fk_l); database: for each data case, all
6 for each data case d € D do candidate rules with matching
7 C,= ruleSubsr:at(Ck, d); condsets are found, and their
8 for each candidate ¢ € C, do support statistics are updated.
9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++

11 end

12 end

13 F = {c € C, | c.rulesupCount = minsup };

14 CAR, = genRules(F));
15 prCAR_= pruneRules(CAR);
16 end

Candidate rule c has the following form:
<(condset, condsupCount), (v,
rulesupCount) >

17 CARs=U CAR;
18 prCARs =, prCAR,;

Source: [1]




CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, =genRules(F));

3  prCAR, = pruneRules(CAR );

4 for(k=2.F,  #9; k++) do

5 C, = candidateGen(F, ));

6 for each data case d € D do

7 C,=ruleSubset(C,, d);

8 for each candidate ¢ € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++
11 end

12 end

13 F = {c € C, | c.rulesupCount = minsup }, Only frequent rule items are

14 CAR, = genRules(F));

15 prCAR, = pruneRules(CAR,);
16 end

17 CARs=U,_CAR;;

18 prCARs =, prCAR,;

Source: [1]

retained.



CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, = genRules(F));

3  prCAR, = pruneRules(CAR));

4 for(k=2;F_ #9; k++)do

5 C, = candidateGen(F, ));

6 for each data case d € D do

7 C,=ruleSubset(C,, d);

8 for each candidate ¢ € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++
11 end

12 end

13 F = {c € C, | c.rulesupCount = minsup };

14 CAR, = genRules(F);

15 prCAR, = pruneRules(CAR,);
16 end )
17 CARs=U,_CAR;;

18 prCARs =, prCAR,;

Source: [1]



CBA — Rule Generation (CBA-RG)

1 F, ={large l-ruleitems};

2 CAR, =genRules(F));

3  prCAR, = pruneRules(CAR );

4 for(k=2;F_ #9; k++)do

5 C, = candidateGen(F, ));

6 for each data case d € D do

7 C,=ruleSubset(C,, d);

8 for each candidate ¢ € C,do

9 c.condsupCount++;

10 if d.class = c.class then c.rulesupCount++
11 end

12 end

13 F = {c € C, | c.rulesupCount = minsup };

14 CAR, = genRules(F));

15 prCAR, = pruneRules(CAR,);

16 end

17 CARs = CAR; final set of CARs

18 prCARs =U prCAR,;final set of CARs after pruning

Source: [1]



CBA-RG side by side with apriori

I, ={large l-ruleitems}:
CAR, = genRules(F));
prCAR, = pruneRules(CAR);
for (k=2;F, , #J; k++) do
C, = candidateGen(F | ));
for each data case d € D do
C,=ruleSubset(C,, d);
for each candidate ¢ € C,do
c.condsupCount++;
10 “if d.class = c.class then c.rulesupCount++
11 end
12 end
13 F, ={c € C, | c.rulesupCount = minsup };
14 CAR, = genRules(F));
15 prCAR, = pruneRules(CAR,);
16 end
17 CARs=U,CAR;
18 prCARs =U, prCAR;

R=liv BN e IRV I Y S

Source: [1]

1) L, = {large l-itemsets};

2) for ( k=2; Lir_1 # 0; k++ ) do begin

3) . = apriori-gen{Ly_;); // New candida
1) forall transactions 1 € D do begin

5) 'y = subset(C}y, t); // Candidates con
6) forall candidates ¢ € C; do

7) c.count—+;

8) end

9) Ly ={c € ;| c.count > minsup}
10) end
11) Answer = | J, Lx;

Source: [4]

In CBA-RG there are separate counters for condset and ruleitem. This allows to compute
the confidence of the rule as rulesupCount/condsupCount.



Classification based on associations (CBA)

1. Rule Generator

Mining of Class Association Rules based on
Apriori

2. Classifier Builder

M1 — many passes over the data
1. Sort Rules (conf, supp, length)
2. Data coverage pruning — many passes over
data
3. Default rule pruning

M2 — find best rule for each data case
* Optimized version —slightly more than one
pass over data

Both M1 and M2 preserve Condition 1
and Condition 2

CONDITION 1

Each training case is
covered by the rule with
the highest precedence
over other rules covering
the case.

CONDITION 2
Every rule in the classifier
correctly classifies at least
one training case.



CBA-Classifier Builder (CB M1)

I R =sort(R);

2 Tor eachrule r € R in sequence do Rule ranking criteria

3 temp = ; * Confidence

4 for each case d € D do . Support

5 if d satisfies the conditions of r then + Rule length

6 store d.id in femp and mark r if it correctly (shorter is better)
classifies d:;

7 if r 1s marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D;

10 selecting a default class for the current C;

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number
of errors and drop all the rules after p in C;

15 Add the default class associated with p to end of C,
and return C (our classifier).

Source: [1], naive CBA-CB algorithm M1



CBA-Classifier Builder (CB M1)

I R =sort(R);

2 for eachrule r € R in sequence do

3 temp = &,

4 for each case d € D do Data coverage pruning

5 if d satisfies the conditions of r then

6 store d.id in temp and mark r if it correctly Add the rule to the
classifies d:; classifier if it classifies at

7 if r 1s marked then least one instance correctly.

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D; Remove all data cases

10 selecting a default class for the current C; covered by the rule.

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number

of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,
and return C (our classifier).

Source: [1], naive CBA-CB algorithm M1



CBA-Classifier Builder (CB M1)

I R =sort(R);

2 for eachrule r € R in sequence do

3 temp = &,

4 for each case d € D do

5 if d satisfies the conditions of r then

6 store d.id in femp and mark r if it correctly
classifies d:;

7 if r is marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D;
10 selecting a default class for the current C;

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number

of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,
and return C (our classifier).

Source: [1], naive CBA-CB algorithm M1

Majority class in the
remaining data. This will be
used if r is the last rule in
the final classifier.



CBA-Classifier Builder (CB M1)

I R =sort(R);

2 for eachrule r € R in sequence do

3 temp = &,

4 for each case d € D do

5 if d satisfies the conditions of r then

6 store d.id in femp and mark r if it correctly
classifies d:;

7 if r 1s marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D; Total number of errors

10 selecting a default class for the current C; made by the current set of
11 _compute the total number of errors of C; rules in C and the default
12 end rule.

13 end

14 Find the first rule p in C with the lowest total number

of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,
and return C (our classifier).

Source: [1], naive CBA-CB algorithm M1



CBA-Classifier Builder (CB M1)

I R =sort(R);

2 for eachrule r € R in sequence do

3 temp = &,

4 for each case d € D do

5 if d satisfies the conditions of r then

6 store d.id in femp and mark r if it correctly
classifies d:;

7 if r is marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D;
10 selecting a default class for the current C;

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number

of errors and drop all the rules after p in C;
15 Add the default class associated with p to end of C,
and return C (our classifier).

“Default rule pruning”

Source: [1], naive CBA-CB algorithm M1



CBA-Classifier Builder (CB M1)

I R =sort(R);

2 for eachrule r € R in sequence do

3 temp = &,

4 for each case d € D do

5 if d satisfies the conditions of r then

6 store d.id in femp and mark r if it correctly
classifies d:;

7 if r is marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D;
10 selecting a default class for the current C;

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number
of errors and drop all the rules after p in C;

15 Add the default class associated with p to end of C,
and return C (our classifier).

Source: [1], naive CBA-CB algorithm M1

Properties:

CONDITION 1
Each training case is
covered by the rule with
the highest precedence
over other rules covering
the case.

CONDITION 2
Every rule in C correctly
classifies at least one
(remaining) training case.



CBA-Classifier Builder (CB M1)

I R =sort(R);
2 for eachrule r € R in sequence do
3 temp = &,

Rl for each case d € D do
5

6

if d satisfies the conditions of r then
store d.id in femp and m r if it correctly
classifies d:;

7 if r 1s marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from

10 selecting a default class for the current C; CBA-CB M1 is simple but
11 compute the total number of errors of C; inefficient — many passes
12 end over the database.

13 end

14 Find the first rule p in C with the lowest total number
of errors and drop all the rules after p in C;

15 Add the default class associated with p to end of C,
and return C (our classifier).

Source: [1], naive CBA-CB algorithm M1



CBA-Classifier Builder (CB M2)

* CBA M1 makes one pass over the remaining data for each rule

* CBA M2 makes “slightly more than one pass” over the data:
finds the best rule in R cover each cased in D

Stage 1 — Find the highest precedence rule (cRule) that correctly classifies
d, and also the highest precedence rule (wRule) that wrongly classifies d

Stage 2 — Process data cases which in stage 1 were found to have wRule
with higher precedence than cRule

Stage 3 — Final rule selection and “default rule pruning”



Classification based on associations (CBA)

1. Rule Generator

Mining of Class Association Rules based on
Apriori

2. Classifier Builder

M1 — many passes over the data
1. Sort Rules (conf, supp, length)
2. Data coverage pruning —many passes over
data
3. Default rule pruning

M2 - find best rule for each data case
* Optimized version — slightly more than one
pass over data

Both M1 and M2 preserve Condition 1
and Condition 2

CONDITION 1

Each training case is
covered by the rule with
the highest precedence
over other rules covering
the case.

CONDITION 2
Every rule in the classifier
correctly classifies at least
one training case.



CBA-CB M2 Stage 1

Q=0 U=, A=,
for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d); Finds the highest precedence
U=Uwv {cRule}; rule that covers d.

cRule.classCasesCovered|d.class]++; C. is the set of rules having the
if cRule = wRule then
same class as d.
Q= QU {cRule},
mark cRule:
10 else A = A U <d.id, d.class, cRule, wRule>
11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S

CRule ... the highest precedence rule that
correctly classifies d



CBA-CB M2 Stage 1

Q=0 U=, A=,

for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d); Finds the highest precedence
U=Uwv {cRule}; rule that covers d.

cRule.classCasesCovered|[d.class]++; « C, is the set of rules having

if cRule = wRule then .
different class than d.
Q= QU {cRule},

mark cRule:
10 else A = A U <d.id, d.class, cRule, wRule>
11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S

wRule ... the highest precedence rule that
incorrectly classifies d



CBA-CB M2 Stage 1

1 Q:@;U:@;A:@;

2 foreachcased € D do

3 cRule = maxCoverRule(C, d);

4 wRule = maxCoverRule(C , d);

5 U=Uwv {cRule}; U is the set of all cRules.
6 cRule.classCasesCovered|d.class|++;

7 if cRule = wRule then

8 Q0 = Q0 v {cRule},

9 mark cRule;

10 else A = A U <d.id, d.class, cRule, wRule>
11 end

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 1

Q=0 U=, A=,
for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d);
U=Uwv {cRule};
cRule.classCasesCovered|d.class]++;
il cRule = wRule then
Q0 = Q0 v {cRule},
mark cRule;
10 else A = A U <d.id, d.class, cRule, wRule>
11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S

For each cRule, the field
classCasesCovered holds
the number of cases it
covers in each class.



CBA-CB M2 Stage 1

Q=0 U=, A=,
for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d);
U=Uwv {cRule};
cRule.classCasesCovered|d.class]++;
@ if cRule = wRule then
0= 0U [cRuleT;
mark cRule;
10 else A = A U <d.id, d.class, cRule, wRule>
11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S



CBA-CB M2 Stage 1

Q=0 U=, A=,
for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d);
U=Uwv {cRule};
cRule.classCasesCovered|d.class]++; )
@ if cRule = wRule then Q holds the set of cRules that have a higher

O = QU {cRule}; precedence than their corresponding wRules.
mark cKiule:

10 else A = A U <d.id, d.class, cRule, wRule>

11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S



CBA-CB M2 Stage 1

Q=0 U=, A=,
for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d);
U=Uwv {cRule};
cRule.classCasesCovered|d.class]++;
@ if cRule = wRule then ) ) .
0 =0 U {cRule}: The cRule is marked to denote it classifies the

mark cRule; case correctly.
10 else A = A U <d.d, d.class, cKule, wRule>
11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S




CBA-CB M2 Stage 1

Q=0 U=, A=,
for each case d € D do
cRule = maxCoverRule(C, d);
wRule = maxCoverRule(C , d);
U=Uwv {cRule};
cRule.classCasesCovered|d.class]++;
@ if cRule = wRule then
Q0 = Q0 v {cRule},
mark cRule;
10 @ else A = A U <d.id. d.class, cRule, wRule>
11 end

Source: [1], CBA-CB algorithm M2

el s I B e S RN RS I S

Unfavourable case
If wRule is better ranked than cRule, a
record is added to the “problem bin” A.

A is a data structure:

<dID, y, cRule, wRule>,
diD ... id of the case d
y .. theclassofd



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

for each entry <dID, v, cRule, wRule> € A do
if wRule is marked then If wRule is marked, it means it also acts

cRule.classCasesCovered[y]--; as a highest precedence cRule in at least
wRule.classCasesCovered[y]|++; one other case

else wSer = allCoverRules(U, dID.case, cRule);
for each rule w € wSet do
w.replace = w.replace U {<cRule, dID, y>},
w.classCasesCovered|y]++;
end
10 0 =0 v wSet
11 end
12 end

Source: [1], CBA-CB algorithm M2

el e s B o R N R S T S



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

1 for each entry <dID,y, cRule, wRule> € A do
2 if wRule 1s marked then
3 cRule.classCasesCovered[y]--;
4 wRule.classCasesCovered|[y]++; The algorithm accepts the error. The
5 else wSet = allCoverRules(U, dID.case, cRule); . .
case d will be classified by wRule.
6 for each rule w € wSet do
7 w.replace = w.replace U {<cRule, dID, y>},
8 w.classCasesCovered[y]++; Since in stage 1, d was counted under
9 end cRule, the algorithm subtracts d from
1[1] end Q=0 wiet the number of cases covered by cRule,
12 end and increments the number of cases
Source: [1], CBA-CB algorithm M2 covered by wRule.

1 Q:@;U:@;A:@;

2 for eachcased € D do

3 cRule = maxCoverRule(C, d);

4 wRule = maxCoverRule(C , d);

5 U=UuU {cRule};

6 cRule.classCasesCovered|d.class]++;

Source: [1], CBA-CB algorithm M2, Stage 1



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

The algorithm accepts the error. The

1 for each entry <dID, y, cRule, wRule> € A do case d will be classified by wRule.

2 if wRule 1s marked then

3 cRule.classCasesCovered|[v]--; o

4 wRule.classCasesCovered[y]++; For case d, both Condition 1

5 else wSer = allCoverRules(U, dID.case, cRule); and Condition 2 are

6 for each rule w € wSet do satisfied.

7 w.replace = w.replace U {<cRule, dID, y>},

g Enm;.classCasasterﬂd[y]++; CONDITION 1

10 0 = 0 U wSet Each training case is

11 end covered by the rule with

12 end .

Source: [1], CBA-CB algorithm M2 the hlgheSt precedence
over other rules covering
the case

CONDITION 2

Every rule in C correctly
classifies at least one
(remaining) training case.



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

for each entry <dID, v, cRule, wRule> € A do
if wRule is marked then
cRule.classCasesCovered[y]--;
wRule.classCasesCovered[y]|++;
else wSet = allCoverRules(U, dID.case, cRule);
for each rule w € wSet do
w.replace = w.replace U {<cRule, dID, y>},
w.classCasesCovered|y]++;
end
10 0 =0 v wSet
11 end

12 end
Source: [1], CBA-CB algorithm M2

el e s B o R N R S T S

Since wRule is not marked, it does not
act as a cRule for another rule. However,
there may be multiple higher
precedence rules (than cRule) that cover
d and classify it incorrectly.

allCoverRules() returns all rules that
wrongly classify dID and have higher
precedence than cRule.

It processed only the rules in U, which is
the set of all cRules.



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

1

2

3

4

5

6

7

8

9

10

11 end
12 end

for each entry <dID, v, cRule, wRule> € A do
if wRule is marked then
cRule.classCasesCovered[y]--;
wRule.classCasesCovered[y]|++;
else wSer = allCoverRules(U, dID.case, cRule);
for each rule w € wSet do

w.replace = w.replace U {<cRule, dID, v>}.
w.classCasesCovered|y]++;

end
0 =0 v wSet

Source: [1], CBA-CB algorithm M2

Since wRule is not marked, it does not
act as a cRule for any instance. However,
there may be multiple other higher
precedence rules (than cRule) that cover
d and classify it incorrectly.

wSet is a subset of U, which is the set of
all rules that act as cRule for some
instance. Rules in wSet may replace
cRule when classifying the instance dID.
For each of these rules, we note which
cRule and which instance is replaced.



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

for each entry <dID, v, cRule, wRule> € A do
if wRule is marked then
cRule.classCasesCovered[y]--;
wRule.classCasesCovered[y]|++;
else wSer = allCoverRules(U, dID.case, cRule);
for each rule w € wSet do
w.replace = w.replace U {<cRule, dID, y>},
w.classCasaanverﬂd[y]++;
end
10 0 =0 v wSet
11 end

12 end
Source: [1], CBA-CB algorithm M2

el e s B o R N R S T S

Since wRule is not marked, it does not
act as a cRule for any instance. However,
there may be multiple other higher
precedence rules (than cRule) that cover
d and classify it incorrectly.

Indicates that the rule might cover the
case dID.



CBA-CB M2 Stage 2

In stage 2, the algorithm processes the data cases stored in A:
for these data cases, the highest precedence rule was wRule.

for each entry <dID, v, cRule, wRule> € A do
if wRule is marked then
cRule.classCasesCovered[y]--;
wRule.classCasesCovered[y]|++;
else wSer = allCoverRules(U, dID.case, cRule);
for each rule w € wSet do

w.replace = w.replace U {<cRule, dID,y>}; | sta0e 1, Q was set to hold cRules that
w.classCasesCovered|y]++;

end had a higher precedence than their
10 0 =0 JwSer corresponding wRules.

11 end Now Q is extended with rules in wSet.
12 end

Source: [1], CBA-CB algorithm M2

el e s B o R N R S T S




CBA-CB M2 Stage 3

In stage 3, the algorithm chooses the final set of rules.

1 classDistr = compClassDistri(D);

2 ruleErrors = 0;

3 Q=sort(Q);

4 for each rule r in Q in sequence do

5 if r.classCasesCovered[r.class] # 0 then

6 for each entry <rul, dID, y> in r.replace do

7 if the dID case has been covered by a
previous r then

8 r.classCasesCovered[v]--;

9 else rul.classCasesCovered[vy]--;

10 ruleErrors = ruleErrors + errorsOfRule(r);

11 classDistr = update(r, classDistr);

12 defaultClass = selectDefault(classDistr);

13 defaultErrors = defErr(defaultClass, classDistr);

14 totalErrors = ruleErrors + defaultErrors;

15 Insert <r, default-class, totalErrors> at end of C

16 end

17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;

19 Add the default class associated with p to end of C;

20 Return C without totalErrors and default-class;,

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

In stage 3, the algorithm chooses the final set of rules.

1 classDistr = compClassDistri(D): Counts the number of training cases in
2 ruleErrors = 0; each class in the initial training data.
3 Q=sort(Q);
4 for each rule r in Q in sequence do
5 if r.classCasesCovered[r.class] # 0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a
previous r then
8 r.classCasesCovered[v]--;
9 else rul.classCasesCovered[vy]--;
10 ruleErrors = ruleErrors + errorsOfRule(r);
11 classDistr = update(r, classDistr);
12 defaultClass = selectDefault(classDistr);
13 defaultErrors = defErr(defaultClass, classDistr);
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;

19 Add the default class associated with p to end of C;

20 Return C without totalErrors and default-class;,

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

1 classDistr = compClassDistri(D);
2 ruleErrors = 0; Records the number of errors made so
3 = sort(Q); e
4 fQur f:ﬂch(gllf: rin Q in sequence do far on the training data
5 if r.classCasesCovered[r.class] # 0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a
previous r then
8 r.classCasesCovered[v]--;
9 else rul.classCasesCovered[vy]--;
10 ruleErrors = ruleErrors + errorsOfRule(r);
11 classDistr = update(r, classDistr);
12 defaultClass = selectDefault(classDistr);
13 defaultErrors = defErr(defaultClass, classDistr);
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;

19 Add the default class associated with p to end of C;

20 Return C without totalErrors and default-class;,

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

e e N, B SRS U T

8

9

10
11
12
13
14
15
16
17
18

19
20

classDistr = compClassDistri(D);
ruleErrors = 0,

ég = sort(Q);
or each rule r in Q in sequence do

if r.classCasesCovered[r.class] # 0 then
for each entry <rul, dID, y> in r.replace do
if the dID case has been covered by a
previous r then

r.classCasesCovered[v]--;
else rul.classCasesCovered[vy]--;
ruleErrors = ruleErrors + errorsOfRule(r);
classDistr = update(r, classDistr);
defaultClass = selectDefault(classDistr);
defaultErrors = defErr(defaultClass, classDistr);
totalErrors = ruleErrors + defaultErrors;
Insert <r, default-class, totalErrors> at end of C
end
end
Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;
Add the default class associated with p to end of C;
Return C without fetalErrors and default-class;

Source: [1], CBA-CB algorithm M2

Rule ranking criteria

* Confidence

* Support

* Rule length
(shorter is better)

CONDITION 1
Each training case is
covered by the rule with
the highest precedence
over other rules covering
the case



CBA-CB M2 Stage 3

1 classDistr = compClassDistri(D);
2 ruleErrors = 0; If rule r no longer correctly classifies any
3 Q=sort(Q); class, it is not saved to the final rule list.
4 for each rule r in Q in sequence do
5 if r.classCasesCovered[r.class] # 0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a
previous r then
8 r.classCasesCovered[v]--;
9 else rul.classCasesCovered[vy]--;
10 ruleErrors = ruleErrors + errorsOfRule(r);
11 classDistr = update(r, classDistr);
12 defaultClass = selectDefault(classDistr);
13 defaultErrors = defErr(defaultClass, classDistr);
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;

19 Add the default class associated with p to end of C;

20 Return C without totalErrors and default-class;,

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

r.replace holds the list of
cRules (rul), which this rule

1 classDistr = compClassDistri(D);

2 ruleErrors = 0: replaces (as wRule)

3 Q=sort(Q);

4 for each rule r in Q in sequence do

5 if r.classCasesCovered[r.class] # 0 then

6 for each entry <rul, dID. v> in r.replace do r tries to replace each rule rul in

7 if the dID case has been covered by a rreplace

2 previous r then + This won’t succeed if there is a higher
r.classCasesCovered[v]--; _

9 else rul.classCasesCovered[y]-—: precedence rule r, which covers d.

10 ruleErrors = ruleErrors + errorsOfRule(r);

11 classDistr = update(r, classDistr);

12 defaultClass = selectDefault(classDistr);

13 defaultErrors = defErr(defaultClass, classDistr);

14 totalErrors = ruleErrors + defaultErrors;

15 Insert <r, default-class, totalErrors> at end of C

16 end

17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;

19 Add the default class associated with p to end of C;

20 Return C without totalErrors and default-class;,

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

1 classDistr = compClassDistri(D);
2 ruleErrors = 0;
3 Q=sort(Q);
4 for each rule r in Q in sequence do
5 if r.classCasesCovered[r.class] # 0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a
previous r then
8 r.classCasesCovered[v]--;
9 else rul.classCasesCovered[vy]--;
10 ruleErrors = ruleErrors + errorsOfRule(r);  Errors caused by the current rule and
11 classDistr = update(r, classDistr); previously processed higher precedence
12 defaultClass = selectDefault(classDistr); rules.
13 defaultErrors = defErr(defaultClass, classDistr);
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;

19 Add the default class associated with p to end of C;

20 Return C without totalErrors and default-class;,

Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

Counts the number of training cases in

1 classDistr = compClassDistri(D);
2 ruleErrors = 0: each class in the initial training data.
3 O =sort(Q);
4  for each rule r in Q in sequence do
5 if r.classCasesCovered[r.class] # 0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a
previous r then
8 r.classCasesCovered[v]--;
9 else rul.classCasesCovered[y]--; Update class distributions (presumably by
10 ruleErrors = ruleErrors + errorsOfRule(r); o moving class counts associated with the
1 classDustr = update(r, classDistr), ____ rule (in r.classCasesCovered][class])
12 defaultClass = selectDefault(classDistr); ’ )
13 defaultErrors = defErr(defaultClass, classDistr);
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;
19 Add the default class associated with p to end of C;
20 Return C without totalErrors and default-class;,
Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

I classDistr = compClassDistri(D); Counts the number of training cases in
2 ruleErrors = 0; each class in the initial training data.
3 O =sort(Q),
4 for each rule r in Q in sequence do
5 if r.classCasesCovered[r.class] # 0 then
6 for each entry <rul, dID, y> in r.replace do
7 if the dID case has been covered by a
previous r then
8 r.classCasesCovered[v]--;
9 else rul.classCasesCovered[v]--;
10 ruleErrors = ruleErrors + errorsOfRule(r);
11 classDistr = update(r, classDistr); o _ o o
12 defaultClass = selectDefault(classDistr); Majority class in the remaining training
13 defaultErrors = defTSrr{dﬂfaultClass, classf)istr); data.
14 totalErrors = ruleErrors + defaultErrors;
15 Insert <r, default-class, totalErrors> at end of C
16 end
17 end

18 Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;
19 Add the default class associated with p to end of C;
20 Return C without tetalErrors and default-class;
Source: [1], CBA-CB algorithm M2



CBA-CB M2 Stage 3

~] O h Bl D =

10
11
12
13
14
15
16
17
18

19
20

classDistr = compClassDistri(D); Counts the number of training cases in
ruleErrors = 0; each class in the initial training data.
Q = sort(Q);

for each rule r in Q in sequence do
if r.classCasesCovered[r.class] # 0 then
for each entry <rul, dID, y> in r.replace do
if the dID case has been covered by a
previous r then

r.classCasesCovered[v]--;
else rul.classCasesCovered[v]--;
ruleErrors = ruleErrors + errorsOfRule(r);
classDistr = update(r, classDistr);
defaultClass = selectDefault(classDistr);
defaultErrors = defErr(defaultClass, classDistr);  The number of errors the default class
totalErrors = ruleErrors + dﬁfaultﬁrmrs;
Insert <r, default-class, totalErrors> at end of C
end
end
Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;
Add the default class associated with p to end of C;
Return C without totalErrors and default-class;
Source: [1], CBA-CB algorithm M2

will make in the remaining data.



CBA-CB M2 Stage 3

e e N, B SRS U T

8

9

10
11
12
13
14
15
16
17
18

19
20

classDistr = compClassDistri(D);
ruleErrors = 0,
Q = sort(Q);
for each rule r in Q in sequence do
if r.classCasesCovered[r.class] # 0 then
for each entry <rul, dID, y> in r.replace do

if the dID case has been covered by a
previous r then

r.classCasesCovered[v]--;
else rul.classCasesCovered[vy]--;
ruleErrors = ruleErrors + errorsOfRule(r);
classDistr = update(r, classDistr);
defaultClass = selectDefault(classDistr);
defaultErrors = defErr(defaultClass, classDistr);
totalErrors = ruleErrors + defaultErrors;
Insert <r, default-class, totalErrors> at end of C
end
end
Find the first rule p in C with the lowest totalErrors,
and then discard all the rules after p from C;
Add the default class associated with p to end of C;
Return C without totalErrors and default-class;

Source: [1], CBA-CB algorithm M2

r is added to the final rule list



CBA-CB M2 Stage 3

Final rule pruning (3™)

1 classDistr = compClassDistri(D);

2 ruleErrors = 0;

3 Q=sort(Q);

4 for each rule r in Q in sequence do

5 if r.classCasesCovered[r.class] # 0 then

6 for each entry <rul, dID, y> in r.replace do

7 if the dID case has been covered by a
previous r then

8 r.classCasesCovered[v]--;

9 else rul.classCasesCovered[vy]--;

10 ruleErrors = ruleErrors + errorsOfRule(r);

11 classDistr = update(r, classDistr);

12 defaultClass = selectDefault(classDistr);

13 defaultErrors = defErr(defaultClass, classDistr);

14 totalErrors = ruleErrors + defaultErrors;

15 Insert <r, default-class, totalErrors> at end of C

16 end

17 end

18 _Find the first rule p in C with the lowest totalErrors,

and then discard all the rules after p from C; “default rule pruning”
19 Add the default class associated with p to end of C;
20 Return C without totalErrors and default-class;,
Source: [1], CBA-CB algorithm M2




CBA-CB M2 Stage 3

rules in the classifier

Output of WRTURING {1 b it with CBA-CB, w
CBA-RG set to on pruning set to on
cd.Srules| cd.5rules CBA CBA No. of Run time (sec) | Run time (sec) | No. of

Datasets wfo discr.| discr. [ {CARs + infreq (CARs) CARs (CBA-RG) (CBA-CB) Rules
w/o pru.  pru. |w/o pru pru. w/o pru.  pru. |w/opru  pru. M1 M2 inC

anneal™® 5.2 6.5 1.9 1.9 3.2 3.6 65081 611 |14.33 14.36 0.08 0.06 34
australian® 15.3 13.5 13.5 134 13.2 134 46564 4064 5.00 5.05 0.20 0.22 148
auto* 19.9 29.2 21.0 231 240 27.2 50236 3969 330 3.55 0.12 0.06 54
breast-w 5.0 39 3.9 3.9 4.2 4.2 2831 399 0.30  0.33 0.02 0.03 49
cleve® 21.8 18.2 18.1 19.1 16.7 16.7 48854 1634 4.00 4.30 0.04 0.06 78
crx® 15.1 15.9 143 143 4.1 14.1 42877 4717 490 5.06 0.43 0.30 | 142
diabetes 25.8 27.6 248 255 247 253 3315 162 0.25 0.28 0.03 0.01 57
german*® 27.7 29.5 272  26.5 252 26.5 69277 4561 5.60  6.00 1.04 0.28 172
glass 31.3 27.5 274 274 274 274 4234 291 0.20 0.22 0.02 0.00 27
heart 19.2 18.9 19.6 19.6 18.5 18.5 52309 624 470  4.60 0.04 0.03 52
hepatitis* 19.4 22.6 15.1 15.1 15.1 15.1 63134 2275 2.80 2.799 0.09 0.05 23
horse* 17.4 16.3 18.2 17.9 18.7 18.7 62745 7846 3.2 333 0.35 0.19 97
hypo* 0.8 1.2 1.6 1.6 1.9 1.7 37631 493 | 45.60 45.30 1.02 0.40 35
ionosphere* 10.0 8.0 7.9 7.9 8.2 8.2 55701 10055 375  4.00 0.56 0.41 45
iris 4.7 53 7.1 7.1 7.1 7.1 72 23 0.00 0.00 0.00 0.00 5
labor 20.7 21.0 17.0  17.0 17.0 17.0 5565 313 0.17 0.20 0.00 0.00 12
led7 26.5 26.5 27.8 278 27.8 278 464 336 040 045 0.11 0.10 71
lymph* 26.5 21.0 20.3 189 203 196 40401 2965 270 2.70 0.07 0.05 36
pima 24.5 27.5 269 27.0 274 27.6 2977 125 0.23 0.25 0.04 0.02 45
sick* 1.5 2.1 2.8 2.8 2.7 2.7 71828 627 | 32.60 33.40 0.62 0.40 46
sonar® 29.8 27.8 243 21.79 243 217 57061 1693 534 522 0.30 0.12 37
tic-tac-toe 0.6 0.6 0.0 0.0 0.0 0.0 7063 1378 0.62 0.71 0.12 0.08 8
vehicle* 274 33.6 31.3  31.2 3l.5 313 23446 5704 6.33 6.33 1.40 040 | 125
waveform* 21.9 24.6 202 20.2 204 206 9699 3396 | 13.65 13.55 292 1.12 | 386
wine 7.3 7.9 8.4 8.4 8.4 8.4 38070 1494 234 2.65 0.11 0.04 10
zoo™® 7.8 7.8 54 5.4 5.4 5.4 52198 2049 273 2790 0.61 0.32 7
Average 16.7 17.1 15.6 15.6 157 158 35140 2377 6.35 6.44 0.39 0.18 69

Source: [1]




Classification based on associations (CBA)

In detail description of the CBA algorithm, based on the paper of
Liu et al (1998).

Business Rule CBA (brCBA)

e Simplified version of CBA

* The effect of higher rule expressiveness (disjunctions, negations)
on classifier accuracy

* Effect of rule pruning

* On going work

* Limitations of CBA (and association rule classifiers in general)
* Proposed solution

* Experimental results
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Knowledge Domain experts

base petalWidth>1.75 —> iris-virginica

o
Y,
Y
a

petalLength=[2.45;4.75] and—> iris-versicolor
sepalWidth = [3.05;3.4]

Iris versicolor

With Business Rule Management
System (BRMS) applications can
invoke decision logic which is
input in the form of rules, instead
of procedural code

+ This reduces reliance on the IT experts

- Requires extensive subject matter
expertise

- (A lot of) Expert time

RESTRICTION: We focus on “classification business rules”.




Business rule learning

Rule

Learning Database

Knowledge

base petalWidth>1.75 —> iris-virginica

o
Y,
Y
a

petalLength=[2.45;4.75] and—> iris-versicolor
sepalWidth = [3.05;3.4]

Iris versicolor

Ideally, the rule learning
algorithm executed on the
database of iris varieties would
substitute the human expert.

As we will see, rule learning
algorithms often yields rule sets
that are

* Conflicting

* Contain redundant rules

* Excessive number of rules

* Syntactically simple

* Probabilistic



Problem statement

e Conflicting

* Contain redundant rules

* Excessive number of rules
* Syntactically simple

* Probabilistic

R1: petalWidth>1.75 — iris-virginica,

supp= 0.296, conf=1
—> iris-virginica

supp= 0.100, conf=1

R2: petalWidth>1.75 and
sepalWidth =[3.05;3.4]

R9: sepalLength= (5.55;3.40] and
sepalWidth<3.05
... 50 more rules

—> jris-versicolor
supp=0.230, conf=0.05

While this is not an issue for a completely automated “black box”
classifier, in a business setting the policy can be that the rule set

a) is expert-reviewed before deployment,

b) each decision made by the system can be explained,

c) the rules must be convertible to a form that can be processes by BRMS



BR Learning Requirements

Knowledge
base

Rule
Learning

Iris versicolor

Database

Business rule learning needs a rule-

learning approach, which has

* BRMS supported rule
expressiveness

* Syntactically rich

* Small number of output rules

* Exhaustive set of rules

* Ability to control rule quality

BRMS can then take care of
* Refine the rule base (by Subject
Matter Expert)
e Execute rules
* Classify objects at run time
e Evaluate complex criteria
* Handle uncertainty
* Manage rule conflicts
» Defeasible logic, higher
order rules, ...



brCBA

* brCBA is a simplification of CBA, so that the algorithm can be quickly built
on top of standard association rule learning implementation (e.g. Christian

Borgelt’s arules package in R or LISp-Miner) Business rule learning needs a

Rule learning (brCBA) rule-learning approach, which

1. Learn association rules (constrained to contain the has

class attribute in consequent) with GUHA Method * BRMS supported rule
2. Perform data coverage pruning expressiveness
* Small number of output rules

Classification (same as in CBA algorithm) * Exhaustive set of rules

A standard BRMS rule engine can be used to apply the * Expressive rule language

model (rule set) on data e Rule conflict resolution

* Ability to control rule quality

* The data coverage pruning makes it simple to understand for business analyst why a
specific rule output in the association rule learning was removed. No other pruning is
performed.

* The absence of default rule pruning ensures that all rules matching the specified quality
measures (minSupp and minConf) are on the output.

* GUHA method learns rich association rules with disjunctions and negations



Rule Pruning

* Data coverage pruning is the most commonly used pruning
technique in CBA-derived algorithms

Algorithm 1 Data Coverage

Require: rules — sorted list of rules, T — set of objects in the training dataset

Ensure: rules — pruned list of rules
Rule ranking criteria
rules := sort rules according to criteria * Confidence
for all rule € rules do * Support
matches:= set of objects from T that match both rule ant. and conseq. | 4
if matches==() then
remove rule from rules

Rule length
(shorter is better)

else
remove matches from T
end if
end for
return rules

This definition does not adhere exactly to CBA data
coverage pruning, which removes all data cases
matched by the rule antecedent (if it covers at
least one positive instance). In brCBA we removed
only the correctly classified instances.




Experiment objectives

e Evaluate impact of pruning
— No pruning (use apriori output directly for classification)
— brCBA (apriori, then data coverage pruning)

— Original CBA (data coverage, pessimistic and default rule
pruning)

e Evaluate the impact and sensitivity to:

— minSupport threshold
— minConfidence threshold

e Evaluate the impact of added rule language
expressivity

— negations
— disjunctions in rule body



Experimental setup

Experiment objectives
Datasets
e UCI: Iris, Glass 1) Compare results with
other classifiers
Dataset ROWS Attributes 2) Determine impact of:
* minSupport thr.
Iris 150 4  minConfidence thr.
Glass 214 9 * _pruning
Preprocessing

* Numerical attributes were discretized with equidistant
binning with custom merging of bins with small support

Rule learning
e LISp-Miner implementation, apriori-like setup

Pruning
» Data coverage pruning on/off
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Experimental results

not pruned pruned
Dataset, task support|Rules Accuracy|Rules Accuracy
iris 10 87 0.940 19 0.920

" 2| 168 0.947 21 0.913
" 1| 291 0.967 23 0.927

iris, sequence 1-2 10| 904 0.940 17 0.953
" 2| 1661 0.953 19 0.960
" 1| 2653 0.960 19 0.960

glass 10 32 0.464 21 0.464
" 2| 2374 0.622 68 0.608
balance scale 10| 124 0.891 T8 0.870
" 2| HbHB 0.841| 216 0.714
balance scale, subset 1-2 10111947 0.758| 153 0.779

Impact of minimum support threshold, minConf=0.6

Support: The lower, the better (and slower).




Experimental results

not pruned pruned not pruned pruned
confidence|Rules Accuracy(Rules Accuracy confidence|Rules Accuracy|Rules Accuracy
0.5 58.3 0.529| 25.8 0.5 96 ﬁf)\ 20 0.920
0.6] 31.8 0.464| 21.1 0.464 0.6| 87 0.9401\ 19 0.920
0.7 10.3 0.290| 8.4 0.286 0.7 83 0.940 ) 17 0.920
0.8 2.4 0.117( 1.8 0.117 0.8 76 17 0.920
09 0.4 0.010] 0.2 0.010 0.9 68 0.900| 15 0.880

Glass, minSupp=10 objects (5.18%)

Iris, minSupp=10 objects (1.78%)

not pruned pruned

confidence|Rules Accuracy|Rules Accuracy

0.6] 124
0.7 86
0.8 50
0.9 24
1.0 1

0.891) 78 0.870
0.875| 70 0.864
0.790| 50 0.782
0.547 24 0.547
0.047 1 0.047

Balancescale, minSupp 10 objects (1.78%)

Confidence: The lower, the better.




Additional experiments

Datasets
 UCI: Iris, Balance scale, Glass
Preprocessing

* Numerical attributes were discretized with equidistant binning with custom
merging of bins with small support

Dataset Rows Attributes Bins after preprocessing
Iris 150 4 18
BalanceScale 625 4 20
Glass 214 9 19

Rule learning
e Default run (as in apriori)

* Negations
— for each item, a dual “negated” item is created

* Dynamic binning — nominal attributes (“subset” length = 2)
* Dynamic binning — cardinal attributes (“interval” length = 2)
Pruning

» Data coverage pruning on/off



Higher expressivity rules with GUHA

* The standard apriori algorithm outputs conjunctive rules

*  BRMS systems routinely work with rules that contain disjunctions between attribute values
(dynamic binning) or negated literals.

* In our experiments, we have employed in the LISp-Miner system which unlike apriori
implementations is able to learn higher expressiveness rules.

Original intervals Sequence 1-2

[20-25) Original intervals...
[25-30) [20-25),[25-30)
[30-35) [25-30),[30-35)
[35-40) [30-35),[35-40) Subset 1-2
[40-45) [35-40),[40-45) Original intervals...
[45-50) [20-25),[25-30)
[20-25),[30-35)
Sequence: binning of following categories (for ordinal attributes) [20-25),[35-40)
Subset: binning of categories regardless of the order
. . . - : [20-25),[40-45)
Length 1-2: generated bins contain at least 1 and maximum 2 original bins
[25-30),[30-35)
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Experimental results
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Experimental results

Dataset/Task Attributes Verifications Mining duration
without binning 315 80 less than 1's
with negations 13 542 2472 12 s
disjunctions
(nominal) 19 413 4715 27 s
without binning 510 146 less than 1s
with negations 33045 9 040 43 s
disjunctions
BalanceScale (nominal) 73 230 17 004 99
(min Conf 0,5) disjunctions
(cardinal)
9582 2122 10s
disjunctions (cardinal
— 3 values) 45915 11 846 75s
without binning 3920 24 less than 1's
Glass with negations 669 075 8 146 64 s

(min Conf 0,9)
dynamic binning not suitable (attributes have only 2 values)




Experimental results

previously reported results brCBA
dataset| C4.5 ripper  cba cmar cpar|not pruned pruned

iris 0.953 0.940 0.947 0.940 0.947 0.967 0.960
glass  |0.687 0.691 0.739 0.701 0.744 0.622 0.612
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Temperature

Association rules identify only the high density regions in the data, which have a strong
presence of one target class.

The definition of “high density” is controlled by the minimum support parameter, and
the definition of strong presence by the minimum confidence parameter.

[40;inf)

[35;40)

[30;35)

[25;30)

[20;25)
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Humidity=(40;60] & Temperature=[20;25) => Utility=2
Humidity=(40;60] & Temperature=[25;30) => Utility=4
Humidity=(40;60] & Temperature=[30;35) => Utility=4
Humidity=(40;60] & Temperature=[35;40) => Utility=2

‘ Corresponding
Conditional utility model
4

L/ N\

(-INF;20)  [20:25)  [2530)  [30;35)  [35;40)  [40;inf)

Temperature

Ceteris paribus: Humidity = (40;60]

Utility

Rules output with minConf = 0.6 and minSupp =1



* Ignores regions in the data with small
density (otherwise combinatorial

explosion).
* Limited to hypercube regions: The | |
problem is further aggravated by the fact o __!I_____L_n____i__n _____ |
that learning is performed on 5540 | g B ' @
transformed feature space (cardinal nrﬂ ------ ﬂ """""
features are discretized to bins). : Y g U B g | iln
z I - T 1 I s R A
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assumption and the probability- oz "_E_l"":rmﬂ L
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(-inf;20) 0 g ! i
(0:40] (40:60] (60;80] (80;100]
Humidity

Rules output with minConf = 0.75 and minSupp =3



The MARC algorithm was proposed to address these challenges.
Three fundamental steps:

* Learn association rules

* Postprocess the rules to incorporate the monotonicity assumption

* Annotate the rules with probability density functions

MARC consists of several consecutive procedures:

e Association rule learning and pruning (standard algorithms)

* Rule Extension —the core procedure implementing the mon. assump.
* Rule Fuzzification - further extending rule coverage

* Rule Annotation with probability density functions

* Rule mixture classification
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2) The rules are
monotonically
extended outside
the grid in each
literal.

The extension is
performed to the
last point whose
inclusion improves
rule confidence



2) The rules are

monotonically
extended outside
the grid in each
literal.

The extension is
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Extension result

40

Humidity



[40;inf)
________ i__ ____i_------.:-...-------
The original rule set contained two rules B L LN SRS b
Humidity=(40;60] & Temperature=[25;30) => Utility=4 g v :B"n
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To further extend the coverage of the instance space,
Rules are extended by appending fuzzy borders
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Naturally provides ranking of related content

Instance can be covered
by multiple rules

1) The distribution is
first aggregated for the
individual rules.

2) The aggregation is
performed across the
rules




* Draft of the algorithm

*Several standard datasets from the UCI repository and a large dataset from the CLEF
recommender system challenge.

dataset autos™ ||breast™ | glass iris | pima™ clef
decision tree 0.805 0.940 | 0.663 | 0.940 | 0.682 0.02
random tree 0.408 0.936 | 0.411 | 0.907 | 0.655 0.02
decision stump 0.352 0.924 | 0.435 | 0.667 | 0.720 0.02
ripper 0.793 0.916 | 0.641 | 0.927 | 0.721 | NA-T
logistic regression 0.711 0.962 | 0.555 | 0.933 | 0.768 | NA-M
svin-rbf kernel 0.340 0.971 | 0.559 | 0.727 | 0.725 0.15
svin-linear kernel 0.440 0.968 | 0.471 | 0.667 | 0.753 | NA-M
neural network 0.774 0.971 | 0.692 | 0.967 | 0.744 | NA-T
MARC 0.843 0.936 | 0.682 | 0.940 | 0.717 0.11
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