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Anomaly detection
motivation

Anomaly detection is about ...
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Anomaly detection
motivation

... point of view.
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Anomaly detection
motivation

Anomaly in crowd

1www.svcl.ucsd.edu/projects/anomaly/
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Anomaly detection
motivation

Network security
typical proportion of anomalies is 1− 0.1%

0.5 million data points→ 1000 anomalies
Particle physics

typical proportion of anomalies is 10−3 − 10−4%

2 million data points→ 100 anomalies
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Anomaly detection
problem statement

“ An outlier is an observation which deviates so much from the
other observations as to arouse suspicions that it was
generated by a different mechanism.”

1Hawkins 1980 - Identification of outliers
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Anomaly detection
problem statement

Defining a normal region for every possible normal
behaviour is very difficult.
The boundary between normal and anomalous behaviour
is often not precise.
Some anomalous events often adapt to appear normally.
Even normal behaviour may evolve over time.
Obtaining labelled data for training and validation of
models is usually a major issue.
Often the data contains noise that tends to be similar to the
actual anomalies and hence is difficult to distinguish and
remove.



Anomaly detection Anomaly explanation Clustering

Anomaly detection
type of detectors

Anomaly detectors
Statistical
Linear
Proximity based

cluster
distance
density

domain specific
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Anomaly detection
type of detectors

Statistical anomaly detectors
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Anomaly detection
type of detectors

Linear model based detectors
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Anomaly detection
type of detectors

Cluster based detectors
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Anomaly detection
type of detectors

Distance based detectors

https://baldscientist.wordpress.com/2013/02/02/is-free-will-a-matter-of-
being-a-conscious-outlier/
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Anomaly detection
type of detectors

Density based detectors

http://scikit-learn.org/stable/modules/outlier_detection.html
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Outline

1 Anomaly detection
2 Anomaly explanation

Sapling random forests
minimal explanation
maximal explanation

3 Clustering
voting vectors
feature deviations
evaluation

4 Rules
voting vectors
feature deviations
evaluation
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Anomaly explanation
history

Grubbs 1950 - Anomaly detection 1

Knorr 1999 - Question 2

Dang 2013 - Answer 3

1Grubbs 1950 - Sample criteria for testing outlying observations.
2Knorr, Edwin M., and Raymond T. Ng. 1999 - Finding intensional

knowledge of distance-based outliers.
3Dang, Xuan Hong, et al. 2013 - Local outlier detection with interpretation.
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Anomaly explanation
motivation

Network security
attack vs. unscheduled backup

Particle physics
Higgs boson vs. misconfiguration of equipment

Astronomy
cosmic microwave background vs. pigeon nest

Fraud detection
holiday vs. credit card fraud
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Anomaly explanation
problem definition

We have:
dataset
anomaly detection algorithm
labelled suspicious samples

We want:
examine the suspicious samples
interpret them clearly

as a small subset of features
as human readable set of rules
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Sapling Random Forest
sapling

(a) In nature
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Sapling Random Forest
sapling

(a) In nature

(b) In theoretical informatics
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Sapling Random Forest
summary

ensembles of specifically trained CARTs
multiple trees per anomaly
specifically made training sets -> grow sets
trees are quite small -> saplings
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Sapling Random Forest
summary

Summary of the SRF for minimal explanation

Input: data
y← anomalyDetector(data)
for all data(y ==anomaly) do

G← createGrowSet(size,method)
T ← trainTree(G)
SRF ← T

end for
extractRules(SRF)
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Sapling Random Forest
algorithm

Input: data
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Sapling Random Forest
algorithm

y← anomalyDetector(data)
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Sapling Random Forest
algorithm

G← createGrowSet(size,method)
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(a) random selection
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Sapling Random Forest
Grow set selection

A grow set G contains an anomaly xa and several normal
samples xn ⊆ X n.

typical size |G| = 100
random selection

fast even in high dimensions
multiple trees can be grown -> robust

k-nn selection
deterministic - more trees are useless
slow in high dimensions
superior in low dimensions
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Sapling Random Forest
Grow set selection
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Sapling Random Forest
tree training

T ← trainTree(G)
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Sapling Random Forest
splitting criterion

Gini’s index
Gi = 1− p2

a − p2
n,

Information gain

arg max
h∈H

−
∑

b∈{L,R}

|Sb(h)|
|S| H(Sb(h)),
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Sapling Random Forest
splitting criterion

Simplified criterion
arg min

h∈H
|Sa(h)|,

Maximal margin

arg max
d∈D

max minSn
d − xa

d

arg max
d∈D

infSn
d − xa

d
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Sapling Random Forest
algorithm

SRF ← T
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Sapling Random Forest
tree training
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Sapling Random Forest
explaining an anomaly

extractRules(SRF)
C = x2 > 2.2
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Sapling Random Forest
explaining an anomaly

extractRules(SRF)
C = (x2 > 2.2) ∧ (x1 < −2.1)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

normal

anomal



Anomaly detection Anomaly explanation Clustering

Sapling Random Forest
explaining an anomaly

extractRules(SRF)
C = (x2 > 2.2) ∧ (x1 < −2.1) ∧ (x1 > 2.2) ∧ . . .
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Sapling Random Forest
explaining an anomaly

The set of all possible rules is defined as
H =

{
hj,θ|j ∈ {1, . . . , d}, θ ∈ R

}
where

hj,θ(x) =

{
+1 if xj > θ

−1 otherwise

d . . . number of features

θ . . . inner node threshold

xj . . . jth feature of sample x
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Sapling Random Forest
explaining an anomaly

The set of all possible rules is defined as
H =

{
hj,θ|j ∈ {1, . . . , d}, θ ∈ R

}
where

hj,θ(x) =

{
+1 if xj > θ

−1 otherwise

Let hj1,θ1 , . . . , hjt,θt be the set of decisions taken in inner nodes on the
path from the root to the leaf with the anomaly xa. Then xa is
explained as conjunction of atomic conditions
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Sapling Random Forest
rules extraction

Rules in form:

C = (xj1 > θ1) ∧ (xj2 < θ2) ∧ . . . ∧ (xjt > θt)

We calculate groups sizes

r2j =
∑
C∈D

∑
h∈C

I(j ∈ h,L)

r2j−1 =
∑
C∈D

∑
h∈C

I(j ∈ h,R)

I(j ∈ h) =

{
+1 if < rule
−1 otherwise
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Sapling Random Forest
rules extraction

and chose only k-most frequent, where

k = arg min
k

1∑2d
j=1 rj

k∑
j=1

rj > τ

Then we aggregate similar rules and chose the most strict
thresholds.

hR
j = arg min

h∈HR
j

θh
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Sapling Random Forest
summary

Summary of the SRF for maximal explanation

y← anomalyDetection(data)
for all data(y ==anomaly) do

f ← allFeatures
while d < τ do

G← createGrowSet(size, f )
t← trainTree(G)
SRF ← SRF + t
f ← f − topSplitFeature(t)
D = nnDistance(G)
d = D(anomaly)/max(D)

end while
end for
extractRules(SRF)
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Sapling Random Forest
max vs min

(a) average zero (b) average one
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Sapling Random Forest
max vs min

(a) minimal explanation (b) maximal explanation
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Sapling Random Forest
max vs min

(a) maximal explanation
relevance (b) minimal explanation
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Sapling Random Forest
results

Anomaly explanation as feature selection
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Sapling Random Forest
results

Anomaly explanation as feature selection
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Clustering
motivation

Investigation of multiple anomalies at once
Generalized anomaly groups
Discovery of large scale anomalies
Domain knowledge
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Clustering
Voting vectors

binary vector
tree voting
TxA matrix
sapling are anomaly specific
sapling votes for similar anomalies
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Clustering
Voting vectors

Example of voting vectors
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Clustering
Features deviation matrix

deviation in feature ranges
the most strict threshold is stored
lower and upper boundary
Tx2d matrix, but can be reduced
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Clustering
Voting

Example of features deviation matrix
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Clustering
results

Grow set size vs performance

5 10 20 40 80 150
84

85

86

87

88

89

90

91

92

Grow set size 

a
c
c
u

ra
c
y

 

 

raw

raw reduced

voting

fdm



Anomaly detection Anomaly explanation Clustering

Clustering
results

Number of clusters vs performance
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Conclusion and future work

Conclusion
anomaly explanation

most important features
human readable rules

arbitrary anomaly detector
real time/data streams

Future work
multi-dimensional anomalies
cluster rules aggregation
fuzzy rules
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Thank you for your attention.
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