Privacy Attacks on Image AutoRegressive Models

Antoni Kowalczuk*, Jan Dubiński*, Franziska Boenisch, Adam Dziedzic

Prague, 13.03.2025

Short intro about me

Short intro about me

My research interests

Image generation

My research interests

Image generation

Data Privacy

Why data privacy?

World 🗸 Business 🗸 Markets 🗸 Sustainability 🗸 Legal 🗸 Breakingviews 🗸 Technology 🗸 In

Getty Images lawsuit says Stability AI misused photos to train AI

By Blake Brittain

February 6, 2023 6:32 PM GMT+1 · Updated 2 years ago

Why data privacy?

World arphi Business arphi Markets arphi Sustainability arphi Legal arphi Breakingviews arphi Technology arphi In

Lawsuits accuse AI content creators of misusing copyrighted work

By Blake Brittain

January 17, 2023 9:05 PM GMT+1 · Updated 2 years ago

Why data privacy?

World 🗸 🛛 Business 🗸 Markets 🗸 Sustainability 🗸 Legal 🗸 Breakingviews 🗸 Technology 🗸 Investigati

Artists take new shot at Stability, Midjourney in updated copyright lawsuit

By Blake Brittain

November 30, 2023 8:47 PM GMT+1 · Updated a year ago

Why data privacy?

World 🗸 Business 🗸 Markets 🗸 Sustainability 🗸 Legal 🗸 Breakingviews 🗸 Technology

NY Times sues OpenAl, Microsoft for infringing copyrighted works

By Jonathan Stempel

م) (۸

December 28, 2023 12:50 AM GMT+1 · Updated a year ago

Image generation is cool :)

[Han J., et al. 2024]

What happens next:

- 1. Diffusion Models
- 2. LLMs -> Image AutoRegressive Models
- 3. Three models we attack!

Diffusion Models (DMs)

[Esser P., et al. 2024]

Key idea: iterative noising & de-noising

Noising

Key idea: iterative noising & de-noising

Noising

Denoising

DMs are widely adopted

DMs are slow

DMs do not scale well: expectation

DMs do not scale well: reality

[Peebles W., et al. 2023]

Why scaling is important?

Why scaling is important?

Why scaling is important?

What scales well? LLMs!

What scales well? LLMs!

What scales well? LLMs!

Problem: images are continuous

Problem: images are continuous

[Esser P., et al. 2021]

Visual AutoRegressive Model (VAR)

(Oral presentation)

[Tian K., et al. 2024]

[Tian K., et al. 2024]

16x16 = 256

VAR: next-scale prediction

VAR: next-scale encoding

 \hat{z}

VAR: generation

VAR scales well

[[]Tian K., et al. 2024]

VAR scales well

VAR has a great performance

Model	Model Type	FID
medel	medel Type	

[Tian K., et al. 2024]
VAR has a great performance

Model	Model Type	FID
Previous SOTA	DM	2.10
Previous SOTA	IAR	3.80

[Tian K., et al. 2024]

VAR has a great performance

Model	Model Type	FID
Previous SOTA	DM	2.10
Previous SOTA	IAR	3.80
VAR-d16	IAR	3.30
VAR-d20	IAR	2.57
VAR-d24	IAR	2.09
VAR-d30	IAR	1.92

[Tian K., et al. 2024]

Randomized AutoRegressive Model (RAR)

[Yu Q., et al. 2024]

Randomized AutoRegressive Model (RAR)

[Tian K., et al. 2024]

RAR scales well & has a great performance

Model	FID
VAR-d30	1.92

RAR scales well & has a great performance

Model	FID
VAR-d30	1.92
RAR-B	1.95
RAR-L	1.70
RAR-XL	1.50
RAR-XXL	1.48

[Li T., et al. 2024]

MAR has a great performance

Model	FID
VAR-d30	1.92
RAR-XXL	1.48

[Li T., et al. 2024]

MAR has a great performance

Model	FID
VAR-d30	1.92
RAR-XXL	1.48
MAR-B	2.31
MAR-L	1.78
MAR-H	1.55

[Li T., et al. 2024]

Next up: attacks!

- 1. MIA
- 2. DI
- 3. Memorization

Membership Inference Attacks (MIAs) Training of Target Model

Membership Inference Attacks (MIAs) Training of Target Model

Membership Inference Attack on Target Model

Use case: lawsuits!

World V Business V Markets V Sustainability V Legal V Breakingviews V Technology V In

Getty Images lawsuit says Stability AI misused photos to train AI

By Blake Brittain

February 6, 2023 6:32 PM GMT+1 · Updated 2 years ago

MIA: general intuition

Members Non-members

MIA: general intuition

Loss Threshold Attack

Loss Threshold Attack

Why such a threshold?

MIA metric

TPR@FPR=1%

More successful MIA => less private model

Our improvements: VAR and RAR

Our improvements: VAR and RAR

Our improvements: VAR and RAR

Before

After

Biggest improvements

Model	Before	After
VAR-d30	16.68	86.38
RAR-XXL	14.62	49.80

1. Adjust batch size

2. Manipulate the Diffusion Model

Model	Baseline
MAR-B	1.69
MAR-L	1.89
MAR-H	2.18

Model	Baseline	+Adjusted Batch Size
MAR-B	1.69	1.88
MAR-L	1.89	2.25
MAR-H	2.18	2.88

Model	Baseline	+Adjusted Batch Size	+Manipulations of Diffusion Model
MAR-B	1.69	1.88	2.09
MAR-L	1.89	2.25	2.61
MAR-H	2.18	2.88	3.40

IARs are more prone to MIAs than DMs

Dataset Inference (DI)

Use case: lawsuits!

World 🗸 Business 🗸 Markets 🗸 Sustainability 🗸 Legal 🗸 Breakingviews 🗸 Technology 🗸 Investigati

Artists take new shot at Stability, Midjourney in updated copyright lawsuit

By Blake Brittain

November 30, 2023 8:47 PM GMT+1 · Updated a year ago

Why DI: it's easier than MIA

~random guessing

Copyrighted Data Identification (CDI) Jan Dubiński*, Antoni Kowalczuk*, Franziska Boenisch, Adam Dziedzic

CDI pipeline

CDI pipeline

Key component: difference between distributions

CDI: initial results

Our improvement: drop the scoring function

Our improvement: drop the scoring function & replace with sum

Before

After

Our improvement: use our MIAs

Before

After

IARs are more prone to DI than DMs

Memorization

Show that DMs can memorize and generate training data

Say why this is an extreme privacy risk

Show how does it work in DMs (brute-force generation)

Show how does it work in LLMs (find prefix)

Memorization

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz [Carlini N., et al. 2023]

Memorization in LLMs

Problem: generation is costly!

Idea: single pass is cheap

Show how is it done

Highlight the intuition

Show the whole procedure of filtering (top-5 per class)

Show relation of the distance to SSCD

Idea: single pass is cheap

Compare distances

Candidates

Generation

Candidate prefix

Memorized

We successfully extract images from IARs

Here show the main paper image

Here show the table from the main paper

Show a single image that is memorized without prefix (just from the class)

Show images that are memorized pairwise by models

No images are shown to be memorized by DMs trained on ImageNet

We successfully extract images from IARs

We successfully extract images from IARs

Model	VAR-d30	RAR-XXL	MAR-H
Images count	698	36	5

Image extracted *without* a prefix

Figure 6: Image extracted from VAR-d30 without prefix. (Left) memorized image, (right) generated image.

Summary

Show again that IARs are cheaper to run -> consequences for development

Show that IARs are less private (2 plots) -> consequences for data owners

Show that applying methods from LLMs and DMs naively will make privacy risks underreported

Say that the bigger the model, the more it leaks

Show that MAR leaks the least

Summary: IARs are cheaper to run

Summary: IARs are less private

Summary: IARs are less private

Summary: IARs are less private

Thank you!

Backup slides

RAR's bidirectional attention

(a) how does RAR work w/ target-aware position embedding