
Marek Krčál, Avast fellow at Institute of Computer Science

Joint work with Ondřej Švec, Martin Bálek and Otakar Jašek

Hluboke uceni detekce malwaru na EXE souborech
bez predzpracovani



Detection of malicious executables
• static analysis: header, entropy/function call profiles,
strings, even n-grams as features for ML



Detection of malicious executables
• static analysis: header, entropy/function call profiles,
strings, even n-grams as features for ML

(dynamic analysis (simulating the execution): API calls, their
parameters, null terminated objects, memory allocation
patterns)



Detection of malicious executables
• static analysis: header, entropy/function call profiles,
strings, even n-grams as features for ML

(dynamic analysis (simulating the execution): API calls, their
parameters, null terminated objects, memory allocation
patterns)

• avoiding false positives
– false malware detections ruin AV bussiness
– much less malware in the wild (than needed to learn a

classifier)



Deep Learning

xnxn

. . .

x1

xnxn

...

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

performance

traditional ML

large nerual net

amount of data

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

performance

traditional ML

large nerual net

amount of data

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)

training from HDD



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

performance

traditional ML

large nerual net

amount of data
• variable-length input

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)

training from HDD



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

performance

traditional ML

large nerual net

amount of data
• variable-length input

sequences by recurrent nets mostly

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)

training from HDD



Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

performance

traditional ML

large nerual net

amount of data
• variable-length input

sequences by recurrent nets mostly

too long sequences: 1D convolutions followed by max/avg

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)

training from HDD



Convolutional Nets



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)
and the labels are invariant on translation



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

and the labels are invariant on translation



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

and the labels are invariant on translation

convolutional layer:



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

and the labels are invariant on translation

convolutional layer:



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

...

and the labels are invariant on translation

convolutional layer:



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

...

θ1

θ3
θ1

θ3

and the labels are invariant on translation

convolutional layer:



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

...

θ1

θ3
θ1

θ3

• convolutional layers keep variable-sized representation

and the labels are invariant on translation

convolutional layer:



Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

...

θ1

θ3
θ1

θ3

• convolutional layers keep variable-sized representation

and the labels are invariant on translation

convolutional layer:

• operations like max or average to get a fixed size



Dataset
• PE (Portable Executable) files from ∼ 16 months (71 mil)

• Unpacked (32 mil)

• Between 12kB and 1/2 MB (19 mil)



Dataset
• PE (Portable Executable) files from ∼ 16 months (71 mil)

• Unpacked (32 mil)

• Between 12kB and 1/2 MB (19 mil)

• Temporal split:

1.1.2016 1.1.2017 week 8 week 16

train set validation test



Dataset
• PE (Portable Executable) files from ∼ 16 months (71 mil)

• Unpacked (32 mil)

• Between 12kB and 1/2 MB (19 mil)

• Temporal split:

1.1.2016 1.1.2017 week 8 week 16

train set validation test



Dataset
• PE (Portable Executable) files from ∼ 16 months (71 mil)

• Unpacked (32 mil)

• Between 12kB and 1/2 MB (19 mil)

• Temporal split:

1.1.2016 1.1.2017 week 8 week 16

train set validation test

• 33% malware when repeating every clean executable twice
(we need to punish false positives more)



ArchitectureArchitecture



Architecture

• strides improve performance and speed (powers of two)

Architecture



Architecture

• strides improve performance and speed (powers of two)

• only `2 regularization used to stabilize training

Architecture



Architecture

• strides improve performance and speed (powers of two)

• only `2 regularization used to stabilize training

• standard init, Adam, cross-entropy loss

Architecture



Evaluation
• Score: area under the receiver operator curve restricted to
[0, 0.001] (AUC ROC[0,0.001])



Evaluation
• Score: area under the receiver operator curve restricted to
[0, 0.001] (AUC ROC[0,0.001])

False Positives Rate

True Positives Rate



Evaluation

• Training time: 2-3 days

• Score: area under the receiver operator curve restricted to
[0, 0.001] (AUC ROC[0,0.001])

False Positives Rate

True Positives Rate



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy

ReLU instead of SELU −4% but better x-entropy



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy

ReLU instead of SELU −4% but better x-entropy



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy

ReLU instead of SELU −4% but better x-entropy

Strides 3,5,7,9
instead of 4,4,8,8

−8%



Competing architecture (amount of data matters!)



Competing architecture (amount of data matters!)

EmbeddingEmbedding
8× N

Conv 512 Conv 512

×
EmbeddingMax

128× (N/512)

Fully Connected
128



Competing architecture (amount of data matters!)

EmbeddingEmbedding
8× N

Conv 512 Conv 512

×
EmbeddingMax

128× (N/512)

Fully Connected
128

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

MalConv (competitor) ∼ 0.62



Automatic vs. hand-crafted features
Avast’s latest ML system uses 538 in-house hand-crafted
features



Automatic vs. hand-crafted features
Avast’s latest ML system uses 538 in-house hand-crafted
features

feed to a 5-layer feedforward net (same dataset):



Automatic vs. hand-crafted features
Avast’s latest ML system uses 538 in-house hand-crafted
features

feed to a 5-layer feedforward net (same dataset):

AUC ROC[0,0.001]

convolution features ∼ 0.667

hand-crafted features ∼ 0.71 but worse accuracy and x-entropy



Automatic vs. hand-crafted features
Avast’s latest ML system uses 538 in-house hand-crafted
features

feed to a 5-layer feedforward net (same dataset):

AUC ROC[0,0.001]

convolution features ∼ 0.667

hand-crafted features ∼ 0.71 but worse accuracy and x-entropy

ensamble ∼ 0.75 and better accuracy and x-entropy



Automatic vs. hand-crafted features
Avast’s latest ML system uses 538 in-house hand-crafted
features

feed to a 5-layer feedforward net (same dataset):

AUC ROC[0,0.001]

convolution features ∼ 0.667

hand-crafted features ∼ 0.71 but worse accuracy and x-entropy

ensamble ∼ 0.75 and better accuracy and x-entropy

Dataset made it easier for conv net to compete, but..



Explainability
• grad-CAM (Class Activation Map):



Explainability
• grad-CAM (Class Activation Map):

applicable to any conv net



Explainability
• grad-CAM (Class Activation Map):

applicable to any conv net



Explainability
• grad-CAM (Class Activation Map):

applicable to any conv net



Problems/Future work
• Talk to analyst.



Problems/Future work
• Talk to analyst.

• Reduce the training time.



Problems/Future work
• Talk to analyst.

• Reduce the training time.

• Other input: Android files, emulator log

• Advanced architectures (separable or gated convolutions)



Problems/Future work
• Talk to analyst.

• Reduce the training time.

• Other input: Android files, emulator log

• Advanced architectures (separable or gated convolutions)



Problems/Future work
• Talk to analyst.

• Reduce the training time.

• Other input: Android files, emulator log

• Advanced architectures (separable or gated convolutions)

• Tune the "restricted AUC" more. Adapt x-entropy loss?



• Large-scale application of conv nets to a new domain
(data volume matters)



• Large-scale application of conv nets to a new domain
(data volume matters)

• Training for low false positives
(correct score matters)



• Large-scale application of conv nets to a new domain
(data volume matters)

• Training for low false positives
(correct score matters)


