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Detection of malicious executables
• static analysis: header, entropy/function call profiles,
strings, even n-grams as features for ML

(dynamic analysis (simulating the execution): API calls, their
parameters, null terminated objects, memory allocation
patterns)

• avoiding false positives
– false malware detections ruin AV bussiness
– much less malware in the wild (than needed to learn a

classifier)
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Deep Learning

xnxn

. . .

x1

xnxn

...

• end-to-end, feature extraction

• data-hungry

performance

traditional ML

large nerual net

amount of data
• variable-length input

sequences by recurrent nets mostly

too long sequences: 1D convolutions followed by max/avg

f (x)= f (k) · · · f (2)f (1)(x), Θ(k), . . . ,Θ(2),Θ(1)

training from HDD
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Convolutional Nets
input aligned in 1D (speech, text) 2D (images) or 3D (videos)

sequence

x1

xn
...

...

θ1

θ3
θ1

θ3

• convolutional layers keep variable-sized representation

and the labels are invariant on translation

convolutional layer:

• operations like max or average to get a fixed size
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Dataset
• PE (Portable Executable) files from ∼ 16 months (71 mil)

• Unpacked (32 mil)

• Between 12kB and 1/2 MB (19 mil)

• Temporal split:

1.1.2016 1.1.2017 week 8 week 16

train set validation test

• 33% malware when repeating every clean executable twice
(we need to punish false positives more)
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Architecture

• strides improve performance and speed (powers of two)

• only `2 regularization used to stabilize training

• standard init, Adam, cross-entropy loss

Architecture
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Evaluation

• Training time: 2-3 days

• Score: area under the receiver operator curve restricted to
[0, 0.001] (AUC ROC[0,0.001])

False Positives Rate

True Positives Rate



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy

ReLU instead of SELU −4% but better x-entropy



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy

ReLU instead of SELU −4% but better x-entropy



Results (choose the right score!)

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

Max instead of Avg −20% but better accuracy and x-entropy

ReLU instead of SELU −4% but better x-entropy

Strides 3,5,7,9
instead of 4,4,8,8

−8%
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Competing architecture (amount of data matters!)

EmbeddingEmbedding
8× N

Conv 512 Conv 512

×
EmbeddingMax

128× (N/512)

Fully Connected
128

AUC ROC[0,0.001]

Our architecture 0.667± 0.019

MalConv (competitor) ∼ 0.62
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Automatic vs. hand-crafted features
Avast’s latest ML system uses 538 in-house hand-crafted
features

feed to a 5-layer feedforward net (same dataset):

AUC ROC[0,0.001]

convolution features ∼ 0.667

hand-crafted features ∼ 0.71 but worse accuracy and x-entropy

ensamble ∼ 0.75 and better accuracy and x-entropy

Dataset made it easier for conv net to compete, but..
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Problems/Future work
• Talk to analyst.

• Reduce the training time.

• Other input: Android files, emulator log

• Advanced architectures (separable or gated convolutions)

• Tune the "restricted AUC" more. Adapt x-entropy loss?
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