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FIG 6.

LeNet[Feng and Tu (2021)]
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FIG 7.

ResNet

[He et al. (2016)]
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FIG 9. Gradient Descent Trajectory

[Berner et al. (2022)]
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[Berner et al. (2022)]

(SGD)



Institute for Theoretical Physics             mkuehn@itp.uni-leipzig.de

Gradient Descent
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Stochastic Gradient Descent with Momentum

FIG 9. Gradient Descent Trajectory

FIG 10. Stochastic Gradient Descent 

Trajectory

[Berner et al. (2022)]

[Berner et al. (2022)]

(SGD)
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FIG 12. Noise autocorrelation:

Examples selected without replacement
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• calculations done for static weights

o numerics also show anti-correlations at start of training 

Anti-Correlations of the Noise
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FIG 14. Noise autocorrelation: Beginning of training
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➢ Implications for Weight Fluctuations
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FIG 15. Toy loss and Hessian
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• late phase of training:

• analyze weight covariance

− resulting from stochasticity of SGD

− measure for parameter exploration

− insight about escape from minima

Weight Fluctuations at a Minimum
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FIG 15. Toy loss and Hessian

FIG 16. Weight trajectory in toy loss
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Weight Fluctuations at a Minimum - Solution

FIG 17. Empirical weight variance and 

velocity variance against Hessian eigenvalue
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Varying Hyperparameters

FIG 20. Varying Batch Size: Empirical weight variance, velocity 

variance and correlation time against Hessian eigenvalue
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Varying Hyperparameters

FIG 20. Varying Batch Size: Empirical weight variance, velocity 

variance and correlation time against Hessian eigenvalue

FIG 21. Empirical maximum correlation time and crossover 

value vs. theory
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Different Network

FIG 22. Improved Architecture - ResNet instead of 

LeNet: Empirical weight variance and velocity variance 

against Hessian eigenvalue

FIG 23. Improved Architecture - ResNet instead of 

LeNet: Correlation time against Hessian eigenvalue
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Additional Error due to Fluctuations

FIG 24. Experimental weight 

variance and velocity variance 

against Hessian eigenvalue

• Reduction of weight fluctuations leads to 62% reduction of loss fluctuations
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Improved Generalization

FIG 25. Gradient Descent with anti-correlated 

noise in a widening valley

[Orvieto et al. (2022)]
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Training evolution

FIG 26. Evolution of loss (left) and accuracy (right) during training of Lenet
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