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Short review of the CNN design

Architecture progress 

AlexNet → VGGNet → ResNet → now…

→ GoogLeNet

VGGNet is an universal design?

Automatic architecture search

Design choices
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OUTLINE



DATASETS USED IN PRESENTATION:

IMAGENET AND CIFAR-10
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CIFAR-10:

50k training images 

(32x32 px )

10k validation images

10 classes

ImageNet:

1.2M training images 

(~ 256 x 256px )

50k validation images

1000 classes

Russakovskiy et.al, ImageNet Large Scale Visual Recognition Challenge, 2015

Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009



IMAGENET WINNERS
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AlexNet (original):Krizhevsky et.al.,  ImageNet Classification with Deep Convolutional Neural Networks, 2012.
CaffeNet: Jia et.al., Caffe: Convolutional Architecture for Fast Feature Embedding, 2014. 
Image credit: Roberto Matheus Pinheiro Pereira, “Deep Learning Talk”.

Srinivas et.al “A Taxonomy of Deep Convolutional Neural Nets for Computer Vision”, 2016.
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CAFFENET ARCHITECTURE



Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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CAFFENET ARCHITECTURE



VGGNET ARCHITECTURE
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All convolutions are 3x3

Good performance,

but slow 



INCEPTION (GOOGLENET):

BUILDING BLOCK

Szegedy et.al. Going Deeper with Convolutions. CVPR, 2015

Image credit: https://www.udacity.com/course/deep-learning--ud730
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DEPTH LIMIT NOT REACHED YET

IN DEEP LEARNING
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DEPTH LIMIT NOT REACHED YET

IN DEEP LEARNING
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DEPTH LIMIT NOT REACHED YET

IN DEEP LEARNING
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VGGNet – 19 layers, 19.6 billion FLOPS. Simonyan et.al., 2014

ResNet – 152 layers, 11.3 billion FLOPS. He et.al., 2015

Slide credit  Šulc et.al. Very Deep Residual Networks with MaxOut for Plant Identification in the Wild, 2016.

Stochastic ResNet – 1200 layers.

Huang et.al., Deep Networks with Stochastic Depth, 2016



RESNET: RESIDUAL BLOCK

He et.al. Deep Residual Learning for Image Recognition, ICCV 2015
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XCEPTION, RESNEXT: DEPTH-SEP CONV

Inception
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Xception

F.Chollet. Xception: Deep Learning with Depthwise Separable Convolutions, arXiv 2016



XCEPTION, RESNEXT: DEPTH-SEP CONV

ResNet block
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ResNeXt block

Xie et.al. Aggregated Residual Transformations for Deep Neural Network, CVPR 2017



ACCURACY-COMPLEXITY TRADE-OFF
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Canziani et.al. An analysis of deep neural network models for practical applications, 2016



ACCURACY-COMPLEXITY TRADE-OFF
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Canziani et.al. An analysis of deep neural network models for practical applications, 2016



RESIDUAL NETWORKS: HOT TOPIC

 Identity mapping  https://arxiv.org/abs/1603.05027

 Wide ResNets https://arxiv.org/abs/1605.07146

 Stochastic depth https://arxiv.org/abs/1603.09382

 Residual Inception https://arxiv.org/abs/1602.07261

 ResNets + ELU http://arxiv.org/pdf/1604.04112.pdf

 ResNet in ResNet

http://arxiv.org/pdf/1608.02908v1.pdf

 DC Nets http://arxiv.org/abs/1608.06993

 Weighted ResNet

http://arxiv.org/pdf/1605.08831v1.pdf
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AUTOMATIC ARCHITECTURE SEARCH: 

REINFORCEMENT LEARNING
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Pham et.al. Efficient Neural Architecture Search via Parameter Sharing, 2018

ENASNet Conv cell

ENASNet Reduction cell



AUTOMATIC ARCHITECTURE SEARCH: 

EVOLUTION
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Real et.al. Regularized Evolution for Image Classifier Architecture Search, 2018

AmoebaNet Conv cell AmoebaNet Reduction cell



TOO MUCH ARCH OPTIMIZATION MAY HURT
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Long et.al. Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

ImageNet 

classification:

PASCAL

semantic segmentation



TOO MUCH ARCH OPTIMIZATION MAY HURT
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Kiela et.al. Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics

Visual

ST

Visual

MEN

Multimodal

ST

Multimodal

MEN

AlexNet 0.018 0.448 0.208 0.686

GoogLeNet 0.063 0.487 0.243 0.700

VGGNet 0.125 0.506 0.269 0.708

Performance on ESPGame dataset, semantic metrics



NOW SMALL DESIGN CHOICES
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Image credit: Hu et.al, 2015
Transferring Deep Convolutional Neural Networks  for the Scene Classification

of High-Resolution Remote Sensing Imagery
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CAFFENET ARCHITECTURE



LIST OF HYPER-PARAMETERS TESTED
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REFERENCE METHODS: IMAGE SIZE SENSITIVE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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CHOICE OF NON-LINEARITY
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CHOICE OF NON-LINEARITY

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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NON-LINEARITIES ON CAFFENET

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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BATCH NORMALIZATION

(AFTER EVERY CONVOLUTION LAYER)

Ioffe et.al, ICML 2015
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BATCH NORMALIZATION: WHERE,

BEFORE OR AFTER NON-LINEARITY?

Mishkin and Matas. All you need is a good init. ICLR, 2016

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

ImageNet, top-1 accuracy

CIFAR-10, top-1 accuracy, 

FitNet4 network
In short: 

better to test 

with

your architecture

and dataset :)
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Network No BN Before ReLU After ReLU

CaffeNet128-FC2048 47.1 47.8 49.9

GoogLeNet128 61.9 60.3 59.6

Non-linearity BN Before BN After

TanH 88.1 89.2

ReLU 92.6 92.5

MaxOut 92.3 92.9



BATCH NORMALIZATION

SOMETIMES WORKS TOO GOOD AND HIDES PROBLEMS
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Case: 

CNN has less number outputs ( just typo), 

than classes in dataset: 26 vs. 28

BatchNormed “learns well”

Plain CNN diverges



NON-LINEARITIES ON CAFFENET, WITH

BATCH NORMALIZATION

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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NON-LINEARITIES: TAKE AWAY MESSAGE

 Use ELU without batch normalization

 Or ReLU + BN

 Try maxout for the final layers

 Fallback solution (if something goes wrong) – ReLU

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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BUT IN SMALL DATA REGIME ( ~50K IMAGES)

TRY LEAKY OR RANDOMIZED RELU

 Accuracy [%], Network in Network architecture

 LogLoss, Plankton VGG architecture

Xu et.al. Empirical Evaluation of Rectified Activations in Convolutional Network ICLR 2015

ReLU VLReLU RReLU PReLU

CIFAR-10 87.55 88.80 88.81 88.20

CIFAR-100 57.10 59.60 59.80 58.4

ReLU VLReLU RReLU PReLU

KNDB 0.77 0.73 0.72 0.74
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INPUT IMAGE SIZE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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PADDING TYPES

Zero padding, stride = 2

Dumoulin and Visin. A guide to convolution arithmetic for deep learning. ArXiv 2016

No padding, stride = 2 Zero padding, stride = 1
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PADDING

 Zero-padding:

 Preserving spatial size, not “washing out” 

information

 Dropout-like augmentation by zeros

Caffenet128 

 with conv padding: 47% top-1 acc

 w/o conv padding:   41% top-1 acc.
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MAX POOLING:

PADDING AND KERNEL

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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POOLING METHODS

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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POOLING METHODS

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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LEARNING RATE POLICY: LINEAR

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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LEARNING RATE POLICY: LINEAR COSINE

Bello et.al. Neural Optimizer Search with Reinforcement Learning, arXiv 2017
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 Bello et.al performed large scale reinforcement-

learning search of learning rate schedule:

“Interestingly, we also found that the linear 

cosine decay generally allows for a larger initial 

learning rate and leads to faster convergence”



IMAGE PREPROCESSING

 Subtract mean pixel (training set), divide by std.

 RGB is the best (standard) colorspace for CNN

 Do nothing more…

 …unless you have specific dataset.

Subtract local mean pixel
B.Graham, 2015

Kaggle Diabetic Retinopathy Competition report
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IMAGE PREPROCESSING: 

WHAT DOESN`T WORK

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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IMAGE PREPROCESSING: 

LET`S LEARN THE COLORSPACE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

Image credit: https://www.udacity.com/course/deep-learning--ud730
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DATASET QUALITY AND SIZE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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NETWORK WIDTH: SATURATION AND SPEED

PROBLEM

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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BATCH SIZE AND LEARNING RATE

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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CLASSIFIER DESIGN

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016

Ren et.al Object Detection Networks on Convolutional Feature Maps, arXiv 2016

Take home:

put 

fully-connected

before final layer,

not earlier
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APPLYING ALTOGETHER

Mishkin et.al. Systematic evaluation of CNN advances on the ImageNet, arXiv 2016
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>5 pp. additional 

top-1 accuracy

for free.



TAKE HOME MESSAGES

 use ELU if without batchnorm or ReLU with BN.
 apply a learned colorspace transformation of RGB (2 layers of 1x1 

convolution ).
 use the linear learning rate decay policy.
 use a sum of the average and max pooling layers.
 use mini-batch size around 128 or 256. If this is too big for your 

GPU, decrease the learning rate proportionally to the batch size.
 use fully-connected layers as convolutional and average the 

predictions for the final decision.
 when investing in increasing training set size, check if a plateau has 

not been reach.
 cleanliness of the data is more important than the size.
 if you cannot increase the input image size, reduce the stride in 

the consequent layers, it has roughly the same effect.
 if your network has a complex and highly optimized architecture, 

like e.g. GoogLeNet, be careful with modifications.
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THANK YOU FOR THE ATTENTION

 Any questions?

 All logs, graphs and network definitions:

https://github.com/ducha-aiki/caffenet-benchmark

Feel free to add your tests

 The paper is here: https://arxiv.org/abs/1606.02228

ducha.aiki@gmail.com

mishkdmy@cmp.felk.cvut.cz 54

https://github.com/ducha-aiki/caffenet-benchmark
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ARCHITECTURE

 Use as small filters as possible

 3x3 + ReLU + 3x3 + ReLU > 5x5 + ReLU.

 3x1 + 1x3  > 3x3. 

 2x2 + 2x2 > 3x3

 Exception: 1st layer. Too computationally 

ineffective to use 3x3 there.

Convolutional Neural Networks at Constrained Time Cost. He and Sun, CVPR 2015
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 Gaussian noise with variance.

 𝑣𝑎𝑟 𝜔𝑙 = 0.01 (AlexNet, Krizhevsky et.al, 2012)

 𝑣𝑎𝑟 𝜔𝑙 = 1/𝑛𝑖𝑛𝑝𝑢𝑡𝑠 (Glorot et.al. 2010)

 𝑣𝑎𝑟 𝜔𝑙 = 2/𝑛𝑖𝑛𝑝𝑢𝑡𝑠 (He et.al. 2015)

 Orthonormal:                  (Saxe et.al. 2013)  

Glorot → SVD → 𝜔𝑙 = V

 Data-dependent: LSUV (Mishkin et.al, 2016)

Mishkin and Matas. All you need is a good init. ICLR, 2016
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WEIGHT INITIALIZATION FOR A VERY DEEP NET



WEIGHT INITIALIZATION INFLUENCES

ACTIVATIONS
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a) Layer gain 𝐺𝐿 < 1→ vanishing activations variance 

b)      Layer gain 𝐺𝐿 > 1 → exploding activation variance

Mishkin and Matas. All you need is a good init. ICLR, 2016



ACTIVATIONS INFLUENCES MAGNITUDE OF

GRADIENT COMPONENTS
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Mishkin and Matas. All you need is a good init. ICLR, 2016



Algorithm 1. Layer-sequential unit-variance orthogonal initialization.
𝑳 − convolution or fully-connected layer, 𝑊𝐿 − its weights, 𝑂𝐿 − layer output, 
𝜀 − variance tolerance, 
𝑇𝑖 − iteration number, 𝑇𝑚𝑎𝑥 − max number of iterations. 

Pre-initialize network with orthonormal matrices as in Saxe et.al. (2013)
for each convolutional and fully-connected layer 𝑳 do

do forward pass with mini-batch
calculate  v𝑎𝑟(𝑂𝐿)

𝑊𝐿
𝑖+1 = ൗ𝑊𝐿

𝑖 𝑣𝑎𝑟(𝑂𝐿)

until 𝑣𝑎𝑟 𝑂𝐿 − 1.0 < 𝜀 or (𝑇𝑖 > 𝑇𝑚𝑎𝑥)
end for

*The LSUV algorithm does not deal with biases and initializes them with zeros

1:

LAYER-SEQUENTIAL UNIT-VARIANCE

ORTHOGONAL INITIALIZATION
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Mishkin and Matas. All you need is a good init. ICLR, 2016



COMPARISON OF THE INITIALIZATIONS FOR

DIFFERENT ACTIVATIONS

 CIFAR-10 FitNet, accuracy [%]



 CIFAR-10 FitResNet, accuracy [%]
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Mishkin and Matas. All you need is a good init. ICLR, 2016



LSUV INITIALIZATION IMPLEMENTATIONS

 Caffe https://github.com/ducha-aiki/LSUVinit

 Keras https://github.com/ducha-aiki/LSUV-keras

 Torch https://github.com/yobibyte/torch-lsuv
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Mishkin and Matas. All you need is a good init. ICLR, 2016

https://github.com/ducha-aiki/LSUVinit
https://github.com/ducha-aiki/LSUV-keras
https://github.com/yobibyte/torch-lsuv


CAFFENET TRAINING

Mishkin and Matas. All you need is a good init. ICLR, 2016
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GOOGLENET TRAINING

Mishkin and Matas. All you need is a good init. ICLR, 2016
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