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Go

~ Nejstarsi hra na svété

=> hodn¢ zaznamu her
Hraci deska 19 x 19

cern¢ a bil¢ kameny
jednoducha pravidla
kameny se nehybou
komplikovane pozice
tahy maji dalekosahlé
globalni dasledky




Al v Go

velky vétvici faktor (#dalSich tahu ~250)
hluboky strom (Jhra| ~ 150 tahu)
neni jasna heuristika evaluace pozic (vs. Sachy)

3 obdobi:

- gofai - rule-based, domain knowledge ru¢né (~10kyu)
— MCTS - tree-search + playouts (~5dan)

- DL + MCTS - (~ ?77) gob



MCTS

* Heuristické stromov¢ prohledavani
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Deep Learning

. IMHO , ,
* Deep Learning == uceni reprezentaci

* Goal.
— modely, které maji dobré (sémanticke) reprezentace
* Means:

— hlubok¢é modely s mnoha stupni volnosti
— hodné dat

— chytré ucici algoritmy

- GPU/TPU
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DL + MCTS + scale == Alpha Go

Policy network Value network
* Policy net:
~ G: piisti tah Py, (@ls) v (5)
- 13 vrstev :
- 57% acc (~3d)!!
* Value net:

- G: win / loss
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DL + MCTS + scale == Alpha Go
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DL + MCTS + scale == Alpha Go

* Dohromady:

— Policy net — Sifka stromu

— Value net (+ playouts) — hloubka stromu
~ VELKY cluster pro uéeni

- RL ~ 30 000 000 self-play her

- turnaj — 1202 CPU, 176 GPU
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Introduction: Game of Go

@ One of the oldest games.

@ 2 players, perfect information,
deterministic rules.

@ Board size of 19 x 19 intersections.
@ Goal: control the board

— enclose territory, capture enemy.
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Introduction: Computer Go

Go Al is hard:
high branching factor,

no clear evaluation function.

Recently solved by Google AlphaGo,

@ a combination of Monte Carlo Tree Search with deep
learning. [Silver et al., 2016]
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Introduction: Deep Learning

o Differentiable neural network models,
@ large number of parameters,

@ deep — error is back-propagated through many steps.

e Convolutional Neural Networks:
@ hierarchical model based on learning convolutional kernels,

@ great for data with spatial structure — e.g. images, sound
spectrograms, Go boards.

@ Learns increasingly abstract hierarchical representations.
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Introduction: Motivation

@ Strength of Go players is measured by rating:

@ a numerical quantity — rating — is assigned to each player,
o updated after each game, using win/loss information.
e Rating is used to e.g. pair opponents with similar strength.

@ Rating converges slowly for new players, causing problems
such as badly matched opponents and rating deflation.

e Can we use more information (than the win/loss bit) from
each game?
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Introduction: Motivation

@ Strength of Go players is measured by rating:

@ a numerical quantity — rating — is assigned to each player,
o updated after each game, using win/loss information.
e Rating is used to e.g. pair opponents with similar strength.

@ Rating converges slowly for new players, causing problems
such as badly matched opponents and rating deflation.

e Can we use more information (than the win/loss bit) from
each game?

e Maybe the game record itself?!

@ Our Work: Use Deep Learning to predict player’'s strength

from a board position, aiming to improve convergence of
rating systems.
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@ 188,700 Games from Online Go Server (OGS).
e this makes for 3,426,489 pairs (X, y), where

e y is one of 3 classes based on strength,
y € {strong, intermediate, beginner}

e X is encoding of position and last 4 moves, represented as a
volume of size 13 x 19 x 19:

4 planes of liberties of current player,
4 planes of liberties of opponent,

1 plane for empty intersections,

4 planes marking the last 4 moves.
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Augmentation & Downsampling

@ Techniques to reduce over-fitting and improve generalization.

@ Sub-sampling: on average, take every 5th position from each
game (uniformly randomly).

e Augmentation: each sample is randomly transformed into 1
of its 8 symmetries during training.

e Equalization: y classes are equally represented in the training
set (throwaway superfluous examples).

Moud¥ik, Josef Determining Player Skill in the Game of Go with DL



Model Architecture

@ Input layer,

@ 1 Convolutional layer of 512 filters
of size 5 x 5,

o 3 Convolutional layer of 128 filters
of size 3 x 3,

@ 2 fully connected layers of 128
neurons,

@ Output layer, 3-way Softmax.

o All layers (except for the final one)
have ReLU activation.

@ Trained with mini-batched SGD
with Nesterov momentum.

Img. adapted from [Silver et al., 2016].
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Experiments and Results

Single Position

@ Baseline case, accuracy 71.5%
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Figure: Training Loss Evolution
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Experiments and Results

Single Position
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Figure: Dependency of accuracy and sample size on move number.
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Experiments and Results
Aggregation Summary

Table: Summary of results. Augmentation (ensemble of 8 symmetries),
Cropped (skip first 30 moves), Weighted (proportionaly to avg. Acc. for
given move).

’ Model ‘ Acc. ‘ Acc. (Top-2) ‘
Single Position | 71.5 % 94.6%
Single Position (A) | 72.5 % 94.9%
Aggregated per Game, mode (A) | 76.8 % N/A
Aggregated per Game, sum (A) | 77.1 % 96.4%
)
)

Aggregated per Game, sum (A, C) | 77.7 % 96.7%
Aggregated per Game, sum (A, W) | 77.9 % 96.8%
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Conclusions

@ We have used Deep Learning to predict player's strength from
a single game position (= little information).

@ The method is applicable to whole games by aggregating
individual predictions.

@ Works nicely for 3 target classes, more data would be good to
move towards accurate regression.

@ Will be experimentally deployed on Online Go Server
(hopefuly) soon.
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