Long-term Dynamical Predictions and Control HERIOT for Autonomous Underwater Vehicles

Nicolay Pierre, Ignacio Carlucho, Mykhaylo Marfeychuk, Michele Grimaldi & Yvan Petillot

About Me

I'm a PhD student at Heriot-Watt & University of Edinburgh in the UK.

- •My Research is focused on control for Autonomous Underwater Vehicles.
- I want to bridge the gap between "classic" control methods with "modern" machine learning.

•As part of my PhD, the goal is to design new controllers for Autonomous Under Water Vehicles (AUVs).

•Underwater environments exhibit complex non-linear & coupled dynamics.

- •Communication is difficult. After a couple of meters there is only acoustic signal with low bandwidth.
- •The environment is harsh for human operators.

Objective

- Adaptive
- Reliable
- Robust
- Data Efficient

Controller Choice

- .Model Based
- Task Agnostic & Optimal Control
- .Theoretical Guarantees
- Designed For Non-Linear Systems
- MIMO controller

Model Predictive Control

Model Predictive Controller

7

Model Predictive Path Integral

MPC/MPPI Properties

- •MPC
- -Model Based
- -Task Agnostic
- -Extensively studied
- -Theoretical Guarantees

-Feed Forward (trajectory optimization + obstacle avoidance)

•MPPI

- -Gradient Free
- -Work naturally with None-Linear Systems
- -Robust to Noise (modelling & Environment)

Early Results: I

Early Results: II

Recap + 5 min of questions on MPPI

A Few Robotics Key Words

•Reference Frame: The Main frame in which all the robot are located. Usually a Local Inertial Frame.

•Robot Pose: Defines position and orientation of the robot in a Frame.

Problem

We're focused on learning a dynamical model for a Non-Linear Model Predictive Controller (MPPI) with applications to Autonomous Underwater Vehicles (AUVs).

- •The requirements for the model are the following:
- -Model Accuracy, needs to be effectively representing the AUV.
- -Model Stability over many prediction steps.
- -Fast inference time to work with the controller.

- •There are multiple challenges to acquire this model:
- -Long term prediction is subject to compounding errors.
- -Underwater environment are highly coupled across degrees of freedom and highly non-linear.
- -System Identification is a long and fastidious task that require much time, effort & human Knowledge.
- -Learning rigid body motion is complex for Machine Learning algorithms.

Fossen Model Introduction

 $(\boldsymbol{M_{added}} + \boldsymbol{M_{rb}})\dot{\boldsymbol{\nu}} = (\boldsymbol{C_{added}} + \boldsymbol{C_{rb}})(\boldsymbol{\nu})\boldsymbol{\nu} + \boldsymbol{D}(\boldsymbol{\nu})\boldsymbol{\nu} + \boldsymbol{g}(\boldsymbol{\eta}) + \boldsymbol{\tau}_{c+d}$

- Added Mass and Inertial Mass (72 Parameters)
- Coriolis Forces (Computer from Mass Matrices)
- Damping Forces (72 Parameters, for simpler models)
- .Restoring Forces (8 Parameters)
- •Force Input.
- .Total of 152 model parameters.

.We investigate a Neural Network approach solution.

•The model is aware of Rigid body motion before learning by using a Lie Group Math Library.

•Designed a new loss function based on Lie Groups.

20

•What are Lie Groups?

-Lie Groups are Groups but also smooth (differentiable) manifolds.

-A Smooth manifold is a space that locally resembles a linear space.

-A group is a set with composition operation that respect the following axioms: Closure, Identity, Inverse and Associativity.

$$\begin{split} \mathcal{X} \circ \mathcal{Y} &= \mathcal{Z} \in \mathcal{M} \\ \mathcal{E} \circ \mathcal{X} &= \mathcal{X} \circ \mathcal{E} = \mathcal{X} \\ \mathcal{X} \circ \mathcal{X}^{-1} &= \mathcal{X}^{-1} \circ \mathcal{X} = \mathcal{E} \\ (\mathcal{X} \circ \mathcal{Y}) \circ \mathcal{Z} &= \mathcal{X} \circ (\mathcal{Y} \circ \mathcal{Z}) \end{split}$$

Lie Group SE(3)

.The particular group of interest for us is SE(3).

•SE(3) can be used to define rigid body motion within a single mathematical object.

In robotics, a SE(3) element is usually referred to as the pose of a robot.

Lie Group Tangent Space

•The Tangeant space of a Lie Group at its origin is called the Lie Algebra.

The Lie Algebra corresponds to the world frame, wether a Tangeant space at a given element corresponds to the $\frac{1}{20}$ frame.

In the context of SE(3) for Rigid Body motion, its Lie Algebra corresponds the velocity times time in world frame.

•The Tangent space at any point in a Lie Group is a vector space that is isomorphic to the Euclidean space \rightarrow we can represent it into a Euclidean space that are suited for Neural

A Few Useful Operations

$$\begin{split} Exp(^{\mathcal{E}}t) &: \mathfrak{se}(3) \to SE(3) \\ Log(\mathcal{X}) &: SE(3) \to \mathfrak{se}(3) \\ \mathcal{X} \oplus^{\mathcal{X}} v \delta t = \mathcal{Y} = \mathcal{X} \circ Exp(^{\mathcal{X}}v \delta t) \\ \mathcal{X} \ominus \mathcal{Y} = Log(\mathcal{X}^{-1} \circ \mathcal{Y}) =^{\mathcal{X}} t \in \mathcal{T}_{\mathcal{X}}SE(3) \end{split}$$

Gradients on Lie Groups

•Derivatives for the SE(3) Lie Group are clearly defined.

•The computed gradient are constrained to the Lie Group's topology.

•For SO(3) elements, the Jacobian is a vector of size 3 even though the rotation matrix is a 3*3 matrix. If we compute the gradients without the SO(3) knowledge we would have a gradient of size 9 without SO(3) constraint.

Loss Function I

•We designed a loss functions that works on an entire trajectory.

- .It is composed of 3 different quantities:
- -The pose Loss
- -The velocity Loss
- -The velocity delta Loss.

Loss Function II

$$\begin{aligned} \mathcal{L}(\mathcal{G}, \hat{\mathcal{G}}, \boldsymbol{v}, \hat{\boldsymbol{v}}, \boldsymbol{\delta v}, \boldsymbol{\delta v}) = & \alpha \mathcal{L}_{geo}(\mathcal{G}, \hat{\mathcal{G}}) + \beta \mathcal{L}_2(v_1, v_2) + \gamma \mathcal{L}_2(\Delta v_1, \Delta v_2) \\ \\ \mathcal{L}_{geo}(\mathcal{G}, \hat{\mathcal{G}}) = \sum_{i=1}^{\tau} \mathcal{G}_i \ominus \hat{\mathcal{G}}_i \\ \\ s.t: \quad \mathcal{G}_i \in SE(3); v_{i,j} \in \mathcal{T}_{\mathcal{G}_i} SE(3); \Delta v \in \mathcal{T}_{\mathcal{G}_i} SE(3) \end{aligned}$$

Step Model

Trajectory Model

Results I: Simulation Data

Results II: Real Data

Stonefish Simulator

- •New underwater simulator.
- Huge set of sensors
- Accurate modelisation of underwater physics through CADCurrently working on photo-realistic images

Live Demo + Discussion

