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Reasoning

e \What does it mean to reason?

To reason is the capacity of applying logic consciously by drawing conclusions
from new or existing information, with the aim of seeking the truth.

— Wikipedia, March 2025
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an imitation game?



Reasoning

e What does it mean to reason?
e Long-standing goal of Al is to build systems that can “reason”
o Turing’s (1950) test
o Can machines think? “Thinking” is difficult to define
o So we replace the question by another: Can a machine perform well in
an imitation game?

e Can modern-day LLMs perform well in an imitation game?



Progress on the Reasoning Imitation Game
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Progress on the Reasoning Imitation Game
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e Standard evaluation paradigm

Chain-of-Thought Prompting

- Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have? j

Model Output )

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.
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Progress on the Reasoning Imitation Game

e Standard evaluation paradigm

o Compare models in terms of answer accuracy on benchmark datasets

However, our understanding is restricted...
1.  What are the characteristics of the problems that the models solve?

2. s the dataset truly unseen? Data contamination

3. Real-world problems may be arbitrarily complex, can the models generalize?



Progress on the Reasoning Imitation Game

e Standard evaluation paradigm

o Compare models in terms of answer accuracy on benchmark datasets



World Models for

Arithmetic Word Problems

(Opedal et al., 2023)

Systematic Analysis of the Arithmetic Reasoning Capabilities of LLMs



Math Word Problems - What Are They?

e Short narrative text concerning mathematical relationships

e Ends with an interrogative sentence that queries a quantity that can be
derived from information in the text

| Alice has 5 apples. Bob has 3 fewer apples than Alice. How many |
| apples does Bob have? |

g —— — ——




Math Word Problems - What Are They?

e Easy (for adults) to understand

e Yet, requires several separate skills

Solution
execution

Answer
2
Solution
planning
:‘ﬂ Symbolic expressions
r=9o—3
Text

comprehension Mental model
Alice comparison(3i Bob
apple, 5 " |apple, x
Math word problem text

Alice has 5 apples. Bob has 3 fewer apples than
Alice. How many apples does Bob have?




Motivating a Semantic Representation

To understand reasoning capabilities, we want to:

1. Understand the characteristics of the problems

2. Make sure we can generate unseen data
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2. Make sure we can generate unseen data



Math Word Problems as Logical Forms

e Represent each sentence in the problem as a logical form

Problem Text

Isabella has 17 apples.

Lucy has 10 more apples than Isabella.

John has 11 apples.

Emily has 19 apples.

5) The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that
John has compared to Emily.

A O N -

©® How many apples does Sam have?
@ Answer: 19
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Problem Text World Model

1) Isabella has 17 apples. 1 container(Isabella, 17, apple);
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e Represent each sentence in the problem as a logical form

Problem Text World Model
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comparison(Lucy, Isabella, 10, apple);
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Math Word Problems as Logical Forms

e Represent each sentence in the problem as a logical form

Problem Text World Model

1) Isabella has 17 apples. 1 container(Isabella, 17, apple);

2 Lucy has 10 more apples than Isabella. 2 comparison(Lucy, Isabella, 10, apple);

8 John has 11 apples. 3 container(John, 11, apple);

4 Emily has 19 apples. @) container(Emily, 19, apple);

5) The number of apples that Lucy has more than Sam is the 5) comp-eq(Lucy, Sam, Emily, John, apple);

same as the difference between the number of apples that
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©® How many apples does Sam have?
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transfer(alice, bob, 5, apple)

/ \

predicate properties
Relationship expressing Arguments with different
arithmetic concept meaning

Bob gave 5 apples to Alice



Math Word Problems as Logical Forms

e Represent each sentence in the problem as a logical form

Logical Form

Example Sentences

Predicate Properties
agenthlice Alice has 5 kilograms of red
quantity=5 apples.
container entity=apple . ,
R 2ltclee;)wns 5 kilograms of red
unit=kg ppees.
type=+ Bob has 3 fewer apples than
agentA=Alice Alice.
comparison agentB=Bob
quantity=3 Alice has 3 more apples than Bob.
entity=apple
recelver_agent=.Bob Alice gave Bob 3 apples.
sender_agent=Alice
transfer AUERETEY=S
entity=mple Bob got 3 more apples from Alice.
agent=Alice Each of Alice’s baskets holds 4
- quantity=4 apples.

entityA=apple
entityB=basket

Every basket that Alice has
contains 4 apples.




Math Word Problems as Logical Forms

transfer(alice, bob, x, apple)

/ \

predicate properties
Relationship expressing Arguments with different
arithmetic concept meaning

How many apples did Bob give to Alice?



Math Word Problems as Logical Forms

e Represent each sentence in the problem as a logical form

Problem Text World Model

1) Isabella has 17 apples. 1 container(Isabella, 17, apple);

2 Lucy has 10 more apples than Isabella. 2 comparison(Lucy, Isabella, 10, apple);

8 John has 11 apples. 3 container(John, 11, apple);

4 Emily has 19 apples. @) container(Emily, 19, apple);

5) The number of apples that Lucy has more than Sam is the 5) comp-eq(Lucy, Sam, Emily, John, apple);

same as the difference between the number of apples that

John has compared to Emily. @ container(Sam, q, apple);

@ container(Sam, 19, apple);
©® How many apples does Sam have?
@ Answer: 19



Human Biases in Problem Solving

(Opedal*, Stolfo* et al., 2024)

Systematic Analysis of the Arithmetic Reasoning Capabilities of LLMs



Progress on the Reasoning Imitation Game

e Standard evaluation paradigm

o Compare models in terms of answer accuracy on benchmark datasets

However, our understanding is restricted...
1. What are the characteristics of the problems that the models solve?

2. Is the dataset truly unseen? Data contamination

3. Real-world problems may be arbitrarily complex, can the models generalize?
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LLMs as cognitive models?

e Simulate responses in human surveys

e Act as humans in social science experiments
e Be made to model human language acquisition
e Simulate human learners

o Must remain faithful to human behavior
o Yet, that is often not the case



The question

| |
- Do LLMs exhibit similar biases as !
i human children when solving math i
| word problems? |
| |

____________________________________



The question

|

i Do LLMs exhibit similar biases as Solution
i human children along these steps? execution
I

___________________________________ | Answer
2
Solution

planning

Symbolic expressions
r=9o—3
Text
comprehension Mental model
Alice | comparison(3) [Bob
apple, 5 " |apple, x
Math word problem text

Alice has 5 apples. Bob has 3 fewer apples than
Alice. How many apples does Bob have?

(Nesher and Teubal, 1975; Riley et al., 1983; Kintsch and Greeno,
1985; Hegarty et al., 1995; inter alia)
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Bias #1: Consistency bias

Text comprehension step

Alice has 5 apples.

Easy \i::/ wd ’/‘::',\/,

(1) Bob has 3 fewer (2) Alice has 3 more
apples than Alice. apples than Bob.

b .

How many apples does Bob have?



Bias #2: Transfer vs comparison bias

Solution planning step

Alice has 5 apples.

(1) Alice gave 3 apples
to Bob.

How many apples
does Alice have?

(2) Alice has 3 more
apples than Bob.

How many apples
does Bob have?



Bias #2: Transfer vs comparison bias

Solution planning step

Alice has 5 apples.

Easy / Nﬁlrd G

(1) Alice gave 3 apples
to Bob.
!

How many apples
does Alice have?

(2) Alice has 3 more
apples than Bob.

How many apples
does Bob have?



Bias #3: Carry effect

Solution execution step

16 +7 =23

16 +3 =19



Bias #3: Carry effect

Solution execution step

16 +7 =23
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Problem 1: Test problems from math word problem datasets are likely to have
been used in training

Problem 2: We want fine-grained control over the features of the problems, to
carry out the tests



Generation method

Problem 1: Test problems from math word problem datasets are likely to have
been used in training

Problem 2: We want fine-grained control over the features of the problems, to
carry out the tests

Solution: Generate our own problems!



Generation method

Step 1: Problem structure generation

@ Problem Structure Generation

[T SRR L R S IR S, . L]
agenti
n1 entity1
[n2]x agent2
+/I1?>y ? entity1
agent2 -nd
? entity1 I
agent2
? entity1
A=n7

agent3 ratio=n6| agent3
n5 entity2 ? entity1

container ( [agent1], [n1], [entity1] );

( X, [agent2], [agent1], [n2], [entity1]);
transfer ( None, [agent2], [n3], [entity1] );
transfer ( [agent2], None, [n4] , [entity1]);
container ( [agent3], [n5], [entity2] );
rate ( [agent3], [n6], [entity1], [entity2] );

(+, [agent2], [agent3], [n7] , [entity1] );



Generation method

Step 2: Problem structure instantiation

@ Problem Structure Generation

f 1 ; @ Edward /”.— o

agenti
n1 %ntity1 Problem || 2 Watch —
Structure e \\\‘
n2]x agent2 s A Annie
b +/n3, ?gntity1 Instantiation =~ +3_yh ? watch
agent2 ~n4 :: *C X T
? entity1
agent2
? entity1
A=n7

agent3 ratio=n6| agent3
n5 entity2 ? entity1

Maggie [ \ratio=4|)Maggie \’
2box | ~"? watch

container ( [agent1], [n1], [entity1] );
( X, [agent2], [agent1], [n2], [entity1]);
transfer ( None, [agent2], [n3], [entity1] );
transfer ( [agent2], None, [n4] , [entity1]);
container ([agent3], [n5], [entity2] );
rate ( [agent3], [n6], [entity1], [entity2] );
n (+, [agent2], [agent3], [n7] , [entity1]);



Generation method

Step 3: Template sampling

. Template

@ Problem Structure Generation Samzling Body
I T T O 0 ‘ "% :Edwardhas2 watchs. .
agent1 Edward ' ) ] 5
gen 2 watch ; - 3 . ,Annie has 2 times the amount of watchs '
n1 entity1 Problem - '
. 1compared to the amount Edward has. .
[n2]x. agent2 Structure - e \ . "
+/“37 ? entity1 Instantiation +3_p} ? watch . :Annle bought s welchs: :
agent2 <04 Annie C A N4 1 Annie sold 4 watchs. -
? entity1 ? watch 2 1 ) :
agent2 —Annie— % 1Maggie owns 2 boxs. =
? i ~?watch- . ]
A=T3 oty A; ; > , Every box that Maggie has contains 4 watchs.
- - - - . Maggie has 7 more watchs than Annie. :
agent3 | ratio=ngl agent3 Maggie [\ratio=4[)Maggie CooIIIIIIIIIIIIIIIIIIIIII
n5 entity2 "] ? entity1 2box |2 watch 'How many watchs does Annie have? ,
Question

container ( [agent1], [n1], [entity1] );
( X, [agent2], [agent1], [n2], [entity1] );
transfer ( None, [agent2], [n3], [entity1] );
transfer ( [agent2], None, [n4] , [entity1]);
container ([agent3], [n5], [entity2] );
rate ( [agent3], [n6], [entity1], [entity2] );
n (+, [agent2], [agent3], [n7] , [entity1] );



Generation method

Step 4: Linguistic error correction

Template

@ Problem Structure Generation Sampling _ ___ ... Body

o i ' "% :Edwardhas2 watchs.
Edward :

arison ( X, [agent2], [agent1], [n2], [entity1] );

transfer ( None, [agent2], [n3], [entity1] ); Lingulstic Brror

Correction

Edward has 2 watches. Annie has twice
transfer ( [agent2], None, [n4] , [entity1] ); the number of watches that Edward has.
container ([agent3], [n5], [entity2] );

rate ( [agent3], [n6], [entity1], [entity2] );

arison (+, [agent2], [agent3], [n7] , [entity1] );

Annie bought 3 more watches. Annie sold

-
4 watches. Maggie owns 2 boxes. Every
box that Maggie has contains 4 watches.
Maggie has 7 more watches than Annie.
How many watches does Annie have?

] ] !
' agenti1 ' R ' . . :
5 . e 2 watch ) - ~4. ,Annie has 2 times the amount of watchs '
: n1 entity1 ; Problem ‘ i 1compared to the amount Edward has. ;
' y + Structure e ST :
' [n2]x agent2 "1 iati X - [nne ' Annie bought 3 watchs '
' +/r13, ? entity1 : Instantiation — +3_o} 2 watch ' g - :
- agent2 <04 i Annie C '/\\4”—‘\" \Annie sold 4 watchs. ’
' ? entity1 ' ? watch 2 1 :
' agent2 . —Amte— % :Maggie owns 2 boxs. =
1 2 . mch ]
. A=ns tmatityl . A; ; " > , Every box that Maggie has contains 4 watchs. :
. e - = e :Maggie has 7 more watchs than Annie. :
k agent3 ratio=n6| agent3 : Maggie ratio=4])Maggie oL LoLooooCIoCIoTCLCILILE

+ | n5entity2 7| 2 entity1 ' 2box |2 watch 'How many watchs does Annie have? .
1 T  N———— | e———— e e ee e e e
. . Question
] 1

, container ([agent1], [n1], [entity1] ); = Complete MWP @ LLM Prompting

] ]

] 1

] ]

] ]

] 1

] ]

1 ]

1 ]

] ]

] ]

] ]

] 1

] ]

] ]

] 1
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Experimental setup

e Want a causal effect of a problem feature X on LLM performance Y

e Generate problems in pairs, X=x and X=x’, and estimate CATE:
E[Y(z) - Y(z') | Z]

e Positive CATEs are consistent with human behavior

e Generate a dataset of 500 problem pairs

e Zero-shot inference, greedy decoding

e Direct prompting and chain-of-thought prompting

e Pretrained-only and instruction-tuned models: Llama2 7B/13B, Mistral 7B,
Mixtral 8x7B, GPT-3.5 Turbo, GPT-4 Turbo



Experiments: Consistency bias

e Problem specification:

container o (transfer|rate)o---o(transfer|rate)o

N

0—2 times

comparison o (transfer|rate)o-..o(transfer|rate);

v

0—2 times

e Only comparison sentence varies between the two problems

e Addition, subtraction, multiplication, division



Results: Consistency bias

Consistency bias (§5.2)
Mode Model Accuracy (%) pyale
Co InCo CATE

LLaMA2 7B 9.6 438 4.8 <0.001
LLaMA?2 13B 17.2 14.0 3.2 0.006
LLaMA?2 70B 24.0 16.2 7.8 <0.001
Mistral 7B 17.8 12.0 5.8 <0.001
Mixtral 8x7B 23.0 17.0 6.0 <0.001

Direct ";1aMA27B Chat 142 108 34 0.009
LLaMA2 13B Chat  16.4 11.8 4.6 <0.001
LLaMA2 70B Chat  16.4 14.8 1.6 0.158
Mistral 7B Instr. 17.6 14.2 34 0.008
Mixtral 8x7B Instr.  23.4 21.8 1.6 0.195
GPT-3.5 Turbo 32.2 22.8 94 <0.001
LLaMA2 7B 16.4 6.0 104  <0.001
LLaMA?2 13B 30.2 8.6 21.6  <0.001
LLaMA?2 70B 40.2 24.0 162  <0.001
Mistral 7B 36.4 16.8 19.6  <0.001
Mixtral 8x7B 62.4 422 202  <0.001

CoT  LLaMA2 7B Chat 66.8 38.6 282  <0.001
LLaMA?2 13B Chat  67.0 28.6 384  <0.001
LLaMA2 70B Chat  82.8 61.4 214  <0.001
Mistral 7B Instr. 61.8 33.6 282  <0.001
Mixtral 8x7B Instr.  85.4 71.6 13.8  <0.001
GPT-3.5 Turbo 89.2 87.8 14 0.380
GPT-4 Turbo 90.4 72.4 18.0  <0.001




Experiments: Transfer vs comparison bias

e Problem specification(s):

container @ transfer o-:=0transfer;

Y

1—5 times

container O comparisono:---ocomparison;
| - -y

-

1—5 times

e Same symbolic expressions, same named entities



Results: Transfer vs comparison bias

Transfer vs comparison bias (§5.3)

Mode Model Accuracy (%) ——
T C CATE

LLaMA2 7B 21.8 13.0 8.8 <0.001
LLaMA2 13B 28.6 20.0 8.6 <0.001
LLaMA?2 70B 45.4 26.8 18.6 <0.001
Mistral 7B 34.0 20.4 13.6 <0.001
Mixtral 8x7B 422 304 11.8 <0.001

Direct 1y aMA2 7B Chat 20.2 15.8 4.4 0.005
LLaMA?2 13B Chat 25.4 18.2 7.2 <0.001
LLaMA?2 70B Chat 324 20.0 124 <0.001
Mistral 7B Instr. 28.0 21.8 6.2 <0.001
Mixtral 8x7B Instr. 42.6 28.0 14.6 <0.001
GPT-3.5 Turbo 61.0 334 27.6 <0.001
LLaMA2 7B 18.8 13.6 5.2 0.009
LLaMA2 13B 37.8 13.2 24.6 <0.001
LLaMA2 70B 63.8 33.0 30.8 <0.001
Mistral 7B 49.8 58.8 -9.0 0.004
Mixtral 8x7B 68.6 65.0 3.6 0.206

CoT LLaMA2 7B Chat 69.6 40.8 28.8 <0.001
LLaMAZ2 13B Chat 79.4 48.0 314 <0.001
LLaMA2 70B Chat 99.0 76.2 22.8 <0.001
Mistral 7B Instr. 83.4 52.0 314 <0.001
Mixtral 8x7B Instr. 98.2 83.8 14.4 <0.001
GPT-3.5 Turbo 97.0 93.0 4.0 0.003
GPT-4 Turbo 99.2 91.4 7.8 <0.001




Experiments: Carry effect

e One-step additive comparison problems:

container O comparison;

e Operands and answer are all three-digit numbers

e One problem has no carry, other has at least one (unit and/or tens)



Results: Carry effect

Carry effect (§5.4)
Mode Model Accuracy (%) pegaliue
NCa Ca CATE

LLaMA2 7B 64.8 60.0 4.8 0.009
LLaMA2 13B 72.2 67.2 5.0 0.030
LLaMA?2 70B 95.2 96.2 1.0 0.380
Mistral 7B 72.4 72.0 0.4 0.835
Mixtral 8x7B 954 93.6 1.8 0.117

Direct "y 1 aMA2 7B Chat 612 542 70 0012
LLaMA?2 13B Chat 65.6 59.6 6.0 0.018
LLaMA?2 70B Chat 96.4 97.0 -0.6 0.578
Mistral 7B Instr. 78.0 78.6 -0.6 0.802
Mixtral 8x7B Instr. 95.8 96.4 -0.6 0.578
GPT-3.5 Turbo 99.6 99.4 0.2 0.320
LLaMA2 7B 33.2 38.8 -5.6 0.006
LLaMA2 13B 33.8 334 04 0.833
LLaMA2 70B 68.6 67.6 1.0 0.850
Mistral 7B 73.2 71.0 2.2 0.283
Mixtral 8x7B 79.8 79.8 0.0 1.000

CoT LLaMA2 7B Chat 72.4 71.0 14 0.514
LLaMAZ2 13B Chat 73.8 78.6 -4.8 0.017
LLaMA2 70B Chat 97.0 95.8 1.2 0.180
Mistral 7B Instr. 78.6 75.6 3.0 0.162
Mixtral 8x7B Instr. 97.0 94.6 2.4 0.014
GPT-3.5 Turbo 97.8 98.2 -0.4 0.580
GPT-4 Turbo 99.6 99.6 0.0 -
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Summary

e Biases in text comprehension and solution planning, but not solution
execution
e Why?
o Training data influenced by adult thinking
o Perhaps the carry effect is less prevalent in adults
e Chain of thought amplifies biases in most settings

e Implication: Student model practitioners should exercise care



A Proof System for

Arithmetic Word Problems

(Opedal*, Shirakami* et al., 2025)

Systematic Analysis of the Arithmetic Reasoning Capabilities of LLMs



Progress on the Reasoning Imitation Game

e Standard evaluation paradigm

o Compare models in terms of answer accuracy on benchmark datasets

However, our understanding is restricted...
1. What are the characteristics of the problems that the models solve?

2. Is the dataset truly unseen? Data contamination

3. Real-world problems may be arbitrarily complex, can the models
generalize?



MathGAP

e Framework for evaluating Mathematical Generation on Arithmetic Proofs



MathGAP

e Framework for evaluating Mathematical Generation on Arithmetic Proofs

e |dea: Generate problems by sampling proof trees

Proof tree

® cont (E,19,apple)

@ cont(1,17,apple) @ comp(L,I,10,apple) @ cont (J,11,apple)
® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)
@® cont(S,19,apple)

Word problem Chain-of-Thought Reasoning Trace

@ 1sabella has 17 apples. @ Lucy has 10 more apples than Isabella.

@ 1sabella has 17 apples. @ Lucy has 10 more apples than

Isabella. @ John has 11 apples. ® Emily has 19 apples. ® So Lucy has 17 + 10 = 27 apples. @ John has 11 apples. ® Emily has 19

@ The number of apples that Lucy has more than Sam is the apples. @ So the difference between the number of apples John and Emily
have is 8. @ The number of apples that Lucy has more than Sam is the

same as the difference between the number of apples that
John has compared to Emily. same as the difference between the number of apples that John has
compared to Emily. @ So Sam has 27 - 8 = 19 apples.

® How many apples does Sam have?
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Chain-of-Thought Solutions as Proof Trees

e Use the logical forms as node labels in a proof tree

e Inference rules govern what proof steps are sound in arithmetic reasoning

b I L
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Chain-of-Thought Solutions as Proof Trees

e Use the logical forms as node labels in a proof tree

e Say we know:

o lIsabella has 17 apples cont (Isabella, 17, apple)

o Lucy has 10 more apples
comp (Lucy, Isabella, 10, apple)
than Isabella

e Then we can infer:
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cont (Isabella, 17, apple) comp(Lucy, Isabella, 10, apple)
cont (Lucy, 17 + 10, apple)




Chain-of-Thought Solutions as Proof Trees

e Use the logical forms as node labels in a proof tree

Inference Rules

Example Sentences

cont (a, qi, e) comp(b, a, gz, e)

cont (b, g1 + g2, e)

cont (a, qi, e) transfer(a, b, g2, e)
cont(a, qi1 + g2, e)
cont (a, qi, e) cont (b, g2, e)

comp (b, a, g2 - qi, e)
cont (a1, qi, €) ... cont(an, 49n, e) partwhole(Ai= ai, ai, ..., an, £, €)
cont (Ajmiai, Y 9, f)
cont (a, qi, e) comp(d, c, g2, e) comp-eq (b, a, d, c)

cont (b, a1 + g2, e)

Alice has 3 apples. Bob has 2 more apples than Alice.
Bob has 5 apples.

Alice has 3 apples. Bob gave 2 apples to Alice. - Alice
has 5 apples.

Alice has 3 apples. Bob has 5 apples. - Bob has 2 more
apples than Alice.

Alice has 3 apples. Bob has 5 apples. Alice and Bob
combine their fruits. & Alice and Bob have 8 fruits.
Alice has 7 apples. David has 2 more apples than Charlie.
The number of apples that Bob has more than Alice is the
same as the difference between the number of apples that
David and Charlie have. - Bob has 9 apples.
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e Use the logical forms as node labels in a proof tree

Proof tree
@ cont(1,17,apple) @ comp(L,I,10,apple) @ cont (J,11,apple) ® cont(E,19,apple)
® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)
@® cont(S,19,apple)

Word problem

@ Isabella has 17 apples. @ Lucy has 10 more apples than
Isabella. @ John has 11 apples. ® Emily has 19 apples.

@ The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that
John has compared to Emily.

® How many apples does Sam have?



Chain-of-Thought Solutions as Proof Trees

e Use the logical forms as node labels in a proof tree

Proof tree

@ cont(1,17,apple) @ comp(L,I,10,apple) @ cont(J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple) ® comp (E, J,8,apple) @ comp-eq(L,S,E,J,apple)
@® cont(S,19,apple)
Word problem Chain-of-Thought Reasoning Trace

@ Isabella has 17 apples. @ Lucy has 10 more apples than
Isabella. @ John has 11 apples. ® Emily has 19 apples.

@ The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that
John has compared to Emily.

@ 1sabella has 17 apples. @ Lucy has 10 more apples than Isabella.

@ So Lucy has 17 + 10 = 27 apples. @ John has 11 apples. @ Emily has 19
apples. @ So the difference between the number of apples John and Emily
have is 8. @ The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that John has
v ot oy el compared to Emily. @ So Sam has 27 - 8 = 19 apples.



Chain-of-Thought Solutions as Proof Trees

e Can characterize complexity of reasoning in terms of:

Proof tree

@ cont(I,17,apple) @comp(L,I,10,apple) @ cont(J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)
@® cont(S,19,apple)




Chain-of-Thought Solutions as Proof Trees

e Can characterize complexity of reasoning in terms of:

o Depth of the tree: how many nodes between axioms and answer

Proof tree

@ cont(I,17,apple) @ comp(L,I,10,apple) 4 cont (J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)
@® cont(S,19,apple)




Chain-of-Thought Solutions as Proof Trees

e Can characterize complexity of reasoning in terms of:
o Depth of the tree

o Width of the tree: how many axioms given in the problem

Proof tree

@ cont(I,17,apple) @ comp(L,I,10,apple) ® cont (J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)

@® cont(S,19,apple)



Chain-of-Thought Solutions as Proof Trees

e Can characterize complexity of reasoning in terms of:
o Depth of the tree
o Width of the tree

o Shape of the tree: how are the axioms combined to get to the answer

Proof tree

@ cont(I,17,apple) @ comp(L,I,10,apple) ® cont (J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)
@® cont(S,19,apple)




Chain-of-Thought Solutions as Proof Trees

e Shape of the tree:

o Linear: every proof step takes at most one premise that is not an axiom

Proof tree

@ cont(I,17,apple) 2 comp (L,I,10,apple)

® cont (L,27,apple) 4 comp (L,J,11,apple)

® cont(J,16,apple) 6 comp (J,E,9,apple)

@ cont(E,7,apple)



Chain-of-Thought Solutions as Proof Trees

e Shape of the tree:
o Linear

o Nonlinear

Proof tree

@ cont(1,17,apple) @ comp(L,I,10,apple)

@ cont(J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple)

® comp (E,J,8,apple)

@ comp-eq(L,S,E,J,apple)

@® cont (S,19,apple)



Chain-of-Thought Solutions as Proof Trees

e Can characterize complexity of reasoning in terms of:
o Depth of the tree
o Width of the tree
o Shape of the tree (linear and nonlinear)

o Ordering of the leaf nodes: in which order are the axioms presented

Proof tree
@ cont(I,17,apple) @ comp(L,I,10,apple) ® cont (J,11,apple) ® cont(E,19,apple)
® cont (L,27,apple) ® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)

@® cont(S,19,apple)



Generating Problems

Step 1 = Given a root logical form, sample a proof tree by iteratively applying inference rules until a stopping criterion has been reached.

Problem specification: Available logical form templates: Available inference rules:
Nonlinear 1. cont([agent], [quantity], [entity]) 1. cont(...) comp(...) F cont(...)
Depth: 2 2. comp([agentl], [agent2], [quantity], [entity]) 2. cont(...) cont(...) F comp(...)
Width: 5 3. comp-eq([agentl], [agent2], [agent3], [agent4], [entity]) 3. cont(...) comp(...) comp-eq(...) F cont(...)

Canonical ordering [...] [...1
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Generating Problems

Step 1: Given a root logical form, sample a proof tree by iteratively applying inference rules until a stopping criterion has been reached.

Problem specification: Available logical form templates: Available inference rules:
Nonlinear 1. cont([agent], [quantity], [entity]) 1. cont(...) comp(...) F cont(...)
Depth: 2 2. comp([agentl], [agent2], [quantity], [entity]) 2. cont(...) cont(...) F comp(...)
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@ cont (I,17,apple) @ comp(L,I,10,apple) @ cont(J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple) ® comp (E, J,8,apple) @ comp-eq(L,S,E,J,apple)
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Step 2: Create a word problem by mapping leaf nodes to
text body and root node to a question using templates.

@ Isabella has 17 apples. @ Lucy has 10 more apples than
Isabella. @ John has 11 apples. ® Emily has 19 apples.

@ The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that
John has compared to Emily.

® How many apples does Sam have?



Generating Problems

Step 1: Given a root logical form, sample a proof tree by iteratively applying inference rules until a stopping criterion has been reached.

Problem specification: Available logical form templates: Available inference rules:
Nonlinear 1. cont([agent], [quantity], [entity]) 1. cont(...) comp(...) F cont(...)
Depth: 2 2. comp([agentl], [agent2], [quantity], [entity]) 2. cont(...) cont(...) F comp(...)
Width: 5 3. comp-eq([agentl], [agent2], [agent3], [agent4], [entity]) 3. cont(...) comp(...) comp-eq(...) F cont(...)
Canonical ordering [...1 [...1

@ cont (I,17,apple) @ comp(L,I,10,apple) @ cont(J,11,apple) ® cont(E,19,apple)

® cont (L,27,apple)

® comp (E,J,8,apple) @ comp-eq(L,S,E,J,apple)

@® cont(S,19,apple)

Step 2: Create a word problem by mapping leaf nodes to
text body and root node to a question using templates.

@ Isabella has 17 apples. @ Lucy has 10 more apples than
Isabella. @ John has 11 apples. ® Emily has 19 apples.

@ The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that
John has compared to Emily.

® How many apples does Sam have?

Step 3: Generate a solution by mapping the nodes of the tree to proof

steps. Internal nodes map to CoT explanations and root node to answer.

@ 1sabella has 17 apples. @ Lucy has 10 more apples than Isabella.

@ So Lucy has 17 + 10 = 27 apples. @ John has 11 apples. & Emily has 19
apples. @ So the difference between the number of apples John and Emily
have is 8. @ The number of apples that Lucy has more than Sam is the
same as the difference between the number of apples that John has
compared to Emily. @ So Sam has 27 - 8 = 19 apples.



The MathGAP Evaluation Framework

e Can generate problems that are arbitrarily complex

e Easy-to-hard OOD generalization:
o Easy training set
o Complex test set
e \When performance hits saturation, we can flexibly generate a new set of
problems that are even more complex
o Dynamic benchmark



How good are LLMs at solving increasingly

complex problems?

Systematic Analysis of the Arithmetic Reasoning Capabilities of LLMs
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Experiments with In-Context Learning

e Focus on in-context learning
e Can LLMs use simple problems in context to generalize to more complex ones

at inference?
e Does the distribution of in-context examples have an effect on performance?



General Experimental Setup

e For each experiment, generate multiple test sets of different degrees of

complexity with 400 problems in each
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General Experimental Setup

e For each experiment, generate multiple test sets of different degrees of
complexity with 400 problems in each
e Four in-context distributions:
o Zero-shot baseline
o In-distribution baseline
o Primitive examples: Only one proof step of the same form as in test set
o Range of varying complexities (but simpler than test set)
e Greedy decoding, report answer accuracy
e Models: Mixtral-8x7B, Llama3 with 8B and 70B parameters, GPT-3.5 Turbo and
GPT-40
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e Generalization in regards to depth and width for linear problems
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e Generalization in regards to depth and width for linear problems

e Three settings:
o Depth generalization for comparison problems (Alice has 5 more apples
than Bob)
o Depth generalization for transfer problems (Alice gives 5 apples to Bob)
o Width generalization for part-whole problems (How many apples do Alice

and Bob combined?)



Experiment 1: Linear Problems

e Generalization in regards to depth and width for linear problems

e Three settings:
o Depth generalization for comparison problems (Alice has 5 more apples
than Bob)
o Depth generalization for transfer problems (Alice gives 5 apples to Bob)
o Width generalization for part-whole problems (How many apples do Alice
and Bob combined?)
o Test sets:
o Depths 6-10
o Widths 7-11
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Experiment 1: Linear Problems

Linear Problems (Comp)
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Experiment 2: Nonlinear Problems

e Generalization in regards to depth (and width) for nonlinear problems

e Nonlinear problems are generated using comparison-based inference rules



Experiment 2: Nonlinear Problems

e Generalization in regards to depth (and width) for nonlinear problems
e Nonlinear problems are generated using comparison-based inference rules
e Test sets:

o Depths 3-6

o Width: ~27d for depth d
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Experiment 2: Bonus Results on o1 and R1

Nonlinear Problems

OpenAl ol (preview)
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e Depth 7: 01 performance is 0.25% with token limit 4,096; 76.5% with token limit

10,000

e Randomly permuted depth 7 problems (token limit 25,000): 5.0% and 11.0%
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Experiment 3: Order Generalization

e LLMs are known to be sensitive to the order of axioms in reasoning

e Here: Afine-grained analysis
e Consider linear comparison problems with depth 5
e Move one sentence to the beginning of the problem

e \Which sentences are harder to move?



Experiment 3: Order Generalization

Proof tree

@ cont(1,17,apple) @ comp(L,I,10,apple) L
@ comp (L,J,11,apple) |

@ cont (L,27,apple)

® cont(J,16,apple) ST "7 "® comp (J,E,9,apple)

@ cont(E,7,apple)

Word problem (movement distance: 2) Chain-of-Thought Reasoning Trace

@ Lucy has 11 more apples than John. @ Isabella has 17 apples. @Lucy
as 10 more apples than Isabella. @ So Lucy has 17 + 10 = 27 apples. ®So
John has 27 - 11 = 16 apples. ® Emily has 9 fewer apples than John. @ So
Emily has 16 - 9 =7 apples.

@ Lucy has 11 more apples than John. @ Isabella has 17
apples. @ Lucy has 10 more apples than Isabella. ® Emily
has 9 fewer apples than John.

@ How many apples does Emily have?
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Summary

e Consistent decrease in performance as depth and width increase

e But even the most complex problems are sometimes solvable, suggesting that
the models are able to generalize to some extent

e Nonlinear problems are more complex, even when controlling for width

e Order permutation: Problems are harder if the sentence is moved from the
middle, rather than from the beginning or end

e No clear relationship between in-context distribution and performance
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