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Reasoning

● What does it mean to reason?

To reason is the capacity of applying logic consciously by drawing conclusions 
from new or existing information, with the aim of seeking the truth.

– Wikipedia, March 2025
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● Can modern-day LLMs perform well in an imitation game?
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Progress on the Reasoning Imitation Game

● Standard evaluation paradigm
○ Compare models in terms of answer accuracy on benchmark datasets

We take a (formal) data-centric perspective



Systematic Analysis of the Arithmetic Reasoning Capabilities of LLMs

World Models for 
Arithmetic Word Problems 

(Opedal et al., 2023)



Math Word Problems – What Are They?

Alice has 5 apples. Bob has 3 fewer apples than Alice. How many 
apples does Bob have?

● Short narrative text concerning mathematical relationships

● Ends with an interrogative sentence that queries a quantity that can be 
derived from information in the text



Math Word Problems – What Are They?

● Easy (for adults) to understand

● Yet, requires several separate skills

(Nesher and Teubal, 1975; Riley et al., 1983; Kintsch and Greeno, 
1985; Hegarty et al., 1995; inter alia)
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2. Make sure we can generate unseen data



Motivating a Semantic Representation

To understand reasoning capabilities, we want to:

1. Understand the characteristics of the problems

2. Make sure we can generate unseen data

Introduce world-model representation



Math Word Problems as Logical Forms

● Represent each sentence in the problem as a logical form

    Isabella has 17 apples.      
    Lucy has 10 more apples than Isabella.     
    John has 11 apples.     
    Emily has 19 apples.
    The number of apples that Lucy has more than Sam is the   
same as the difference between the number of apples that 
John has compared to Emily.

    How many apples does Sam have?
    Answer: 19
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● Represent each sentence in the problem as a logical form
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● Represent each sentence in the problem as a logical form
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Math Word Problems as Logical Forms

predicate
Relationship expressing 

arithmetic concept

properties
Arguments with different 

meaning

How many apples did Bob give to Alice?



● Represent each sentence in the problem as a logical form

    Isabella has 17 apples.      
    Lucy has 10 more apples than Isabella.     
    John has 11 apples.     
    Emily has 19 apples.
    The number of apples that Lucy has more than Sam is the   
same as the difference between the number of apples that 
John has compared to Emily.

    How many apples does Sam have?
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Human Biases in Problem Solving

(Opedal*, Stolfo* et al., 2024)



Progress on the Reasoning Imitation Game

● Standard evaluation paradigm
○ Compare models in terms of answer accuracy on benchmark datasets

However, our understanding is restricted…

1. What are the characteristics of the problems that the models solve?

2. Is the dataset truly unseen? Data contamination (Sainz et al., 2023; 
Deng et al., 2024; inter alia)

3. Real-world problems may be arbitrarily complex, can the models generalize?
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LLMs as cognitive models?

● Simulate responses in human surveys (Argyle et al., 2023) 

● Act as humans in social science experiments (Aher et al., 2023)

● Simulate human learners (Macina et al., 2023; Nguyen et al., 2023)
○ Must remain faithful to human behavior
○ Yet, that is often not the case (Käser and Alexandron, 2023)

● Be made to model human language acquisition (Warstadt and Bowman, 2022) 
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The question

Do LLMs exhibit similar biases as 
human children along these steps?

(Nesher and Teubal, 1975; Riley et al., 1983; Kintsch and Greeno, 
1985; Hegarty et al., 1995; inter alia)
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(Riley et al., 1983)



Bias #3: Carry effect

Solution execution step

(Hitch, 1978; Ashcraft et al., 1992)
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been used in training
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carry out the tests



Generation method

Problem 1: Test problems from math word problem datasets are likely to have 
been used in training

Problem 2: We want fine-grained control over the features of the problems, to 
carry out the tests

Solution: Generate our own problems!



Step 1: Problem structure generation

Generation method



Step 2: Problem structure instantiation 

Generation method



Step 3: Template sampling

Generation method



Step 4: Linguistic error correction

Generation method
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● Want a causal effect of a problem feature X on LLM performance Y

● Generate problems in pairs, X=x and X=x’, and estimate CATE:

● Positive CATEs are consistent with human behavior

● Generate a dataset of 500 problem pairs

● Zero-shot inference, greedy decoding

● Direct prompting and chain-of-thought prompting

● Pretrained-only and instruction-tuned models: Llama2 7B/13B, Mistral 7B, 

Mixtral 8x7B, GPT-3.5 Turbo, GPT-4 Turbo

Experimental setup



● Problem specification:

● Only comparison sentence varies between the two problems

● Addition, subtraction, multiplication, division

Experiments: Consistency bias
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● Problem specification(s):

● Same symbolic expressions, same named entities

Experiments: Transfer vs comparison bias



Results: Transfer vs comparison bias



● One-step additive comparison problems:

● Operands and answer are all three-digit numbers (like Fürst and Hitch, 2000)

● One problem has no carry, other has at least one (unit and/or tens)

Experiments: Carry effect



Results: Carry effect
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● Biases in text comprehension and solution planning, but not solution 

execution

● Why?

○ Training data influenced by adult thinking

○ Perhaps the carry effect is less prevalent in adults

● Chain of thought amplifies biases in most settings

● Implication: Student model practitioners should exercise care

Summary
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A Proof System for 
Arithmetic Word Problems

(Opedal*, Shirakami* et al., 2025)



Progress on the Reasoning Imitation Game

● Standard evaluation paradigm
○ Compare models in terms of answer accuracy on benchmark datasets

However, our understanding is restricted…

1. What are the characteristics of the problems that the models solve?

2. Is the dataset truly unseen? Data contamination (Sainz et al., 2023; 
Deng et al., 2024; inter alia)

3. Real-world problems may be arbitrarily complex, can the models 
generalize?
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● Framework for evaluating Mathematical Generation on Arithmetic Proofs



MathGAP

● Framework for evaluating Mathematical Generation on Arithmetic Proofs

● Idea: Generate problems by sampling proof trees
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Chain-of-Thought Solutions as Proof Trees

● Use the logical forms as node labels in a proof tree

● Inference rules govern what proof steps are sound in arithmetic reasoning
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● Can characterize complexity of reasoning in terms of:

○ Depth of the tree

○ Width of the tree

○ Shape of the tree: how are the axioms combined to get to the answer
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Chain-of-Thought Solutions as Proof Trees

● Can characterize complexity of reasoning in terms of:

○ Depth of the tree

○ Width of the tree

○ Shape of the tree (linear and nonlinear)

○ Ordering of the leaf nodes: in which order are the axioms presented
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The MathGAP Evaluation Framework

● Can generate problems that are arbitrarily complex

● Easy-to-hard OOD generalization:
○ Easy training set
○ Complex test set

● When performance hits saturation, we can flexibly generate a new set of 
problems that are even more complex

○ Dynamic benchmark
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How good are LLMs at solving increasingly 
complex problems?
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● Focus on in-context learning

● Can LLMs use simple problems in context to generalize to more complex ones 

at inference?

● Does the distribution of in-context examples have an effect on performance?

Experiments with In-Context Learning
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● For each experiment, generate multiple test sets of different degrees of 

complexity with 400 problems in each

● Four in-context distributions:

○ Zero-shot baseline

○ In-distribution baseline

○ Primitive examples: Only one proof step of the same form as in test set

○ Range of varying complexities (but simpler than test set)

● Greedy decoding, report answer accuracy

● Models: Mixtral-8x7B, Llama3 with 8B and 70B parameters, GPT-3.5 Turbo and 

GPT-4o

General Experimental Setup
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● Generalization in regards to depth and width for linear problems

● Three settings:

○ Depth generalization for comparison problems (Alice has 5 more apples 

than Bob)

○ Depth generalization for transfer problems (Alice gives 5 apples to Bob)

○ Width generalization for part-whole problems (How many apples do Alice 

and Bob combined?)

● Test sets:

○ Depths 6-10

○ Widths 7-11

Experiment 1: Linear Problems
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● Generalization in regards to depth (and width) for nonlinear problems

● Nonlinear problems are generated using comparison-based inference rules
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● Generalization in regards to depth (and width) for nonlinear problems

● Nonlinear problems are generated using comparison-based inference rules

● Test sets:

○ Depths 3-6

○ Width: ~2^d for depth d

Experiment 2: Nonlinear Problems
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Experiment 2: Bonus Results on o1 and R1

● Depth 7: o1 performance is 0.25% with token limit 4,096; 76.5% with token limit 

10,000

● Randomly permuted depth 7 problems (token limit 25,000): 5.0% and 11.0%
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● LLMs are known to be sensitive to the order of axioms in reasoning (Chen et 

al., 2024; Eisape et al., 2024)

● Here: A fine-grained analysis

● Consider linear comparison problems with depth 5

● Move one sentence to the beginning of the problem

● Which sentences are harder to move?

Experiment 3: Order Generalization



Experiment 3: Order Generalization



Experiment 3: Order Generalization



● Consistent decrease in performance as depth and width increase

Summary



● Consistent decrease in performance as depth and width increase

● But even the most complex problems are sometimes solvable, suggesting that 

the models are able to generalize to some extent

Summary



● Consistent decrease in performance as depth and width increase

● But even the most complex problems are sometimes solvable, suggesting that 

the models are able to generalize to some extent

● Nonlinear problems are more complex, even when controlling for width

Summary



● Consistent decrease in performance as depth and width increase

● But even the most complex problems are sometimes solvable, suggesting that 

the models are able to generalize to some extent

● Nonlinear problems are more complex, even when controlling for width

● Order permutation: Problems are harder if the sentence is moved from the 

middle, rather than from the beginning or end

Summary



● Consistent decrease in performance as depth and width increase

● But even the most complex problems are sometimes solvable, suggesting that 

the models are able to generalize to some extent

● Nonlinear problems are more complex, even when controlling for width

● Order permutation: Problems are harder if the sentence is moved from the 

middle, rather than from the beginning or end

● No clear relationship between in-context distribution and performance

Summary
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