
Training Neural Networks on Non-Differentiable 
Losses

Yash Patel
Supervisor: Professor Jiří Matas

Visual Recognition Group, Czech Technical University in Prague



Supervised Deep Learning: Training
Three main components of Supervised Deep Learning:

Training data



Supervised Deep Learning: Training
Three main components of Supervised Deep Learning:

Training data      Model



Supervised Deep Learning: Training
Three main components of Supervised Deep Learning:

Training data      Model Loss
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Three main components of Supervised Deep Learning:

Training data      Model Loss

Using backpropagation, weights of the model are updated.
Note: The loss function needs to be differentiable for the use of chain-rule to obtain gradients with respect to 
the weights.
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Two cases:
1. The evaluation metric is differentiable, therefore, can be used as a loss function.
2. The evaluation metric is non-differentiable, therefore, can not be used as a loss function.
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Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.
● Image compression (human perception of similarity): structural similarity index, peak signal to noise 

ratio, mean squared error, etc.
● Object detection (intersection over union):  smooth-L1 distance, L2 distance.
● Scene text recognition (edit distance): per-character cross entropy, connectionist temporal classification.
● Image retrieval (mean average precision, recall@k):  contrastive loss, triplet loss, proxy NCA, etc. 

And many more…

Proxy Losses

Note: Can you even express this as a mathematical function?



Motivation

[1] How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read, Bernard Marr, Forbes 2018.
[2] Here’s How Many Digital Photos Will Be Taken in 2017, Tech Today, 2016. 
[3] Towards Image Understanding from Deep Compression without Decoding, Torfason et al. ICLR 2018.

1. Snapchat users share 527,760/min photos.
2. Instagram users post 46,740/min photos.
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[1] How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read, Bernard Marr, Forbes 2018.
[2] Here’s How Many Digital Photos Will Be Taken in 2017, Tech Today, 2016. 
[3] Towards Image Understanding from Deep Compression without Decoding, Torfason et al. ICLR 2018.

1. Snapchat users share 527,760/min photos.
2. Instagram users post 46,740/min photos.

Learning based compression methods lead to faster 
inference for subsequent tasks such as classification, 
detection and semantic segmentation.

Lower Storage Requirements Faster Inference for subsequent tasks
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Evaluation Metrics / Proxy Losses

1. Multi-scale Structural Similarity (MS-SSIM)

2. Peak Signal to Noise Ratio (PSNR)

Aggregating SSIM at multiple scales is 
MS-SSIM

For a sliding window on 
original and reconstructed 
images.

 

 

 



Evaluation Metric Problems

Original Image

Mentzer et al. CVPR’18 Ballé et al. ICLR’17 BPG JPEG-2000

Higher 
MS-SSIM

MS-SSIM/SSIM cannot distinguish slightly 
blurred and not-blurred versions.



LPIPS-Comp

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Human Evaluations

Full Images

Synchronized 
magnifying glass

Note: We first test 
the evaluators on 
internally 
annotated golden 
set.

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.
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similarity metrics
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Learned perceptual 
similarity metrics

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Hierarchical Auto-Regressive Model

First stage Second stage
Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Saliency Matters

Saliency Masking

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Saliency Matters

Saliency Masking Weighted distortion loss

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Compression Results
Distortion metrics

Human Evaluations

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Compression Results - Object Detection

Object Detection Instance Segmentation

Object Detection on MS-COCO 2017 validation set using 
Faster-RCNN.

Instance  segmentation on MS-COCO 2017 validation  set  
using  Mask-RCNN.

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Compression Results - Qualitative

An example from Kodak dataset at 0.23 bpp.Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.



Conclusions

This paper makes following contributions:
1. An adequate compression specific perceptual similarity metric.
2. Incorporating saliency for image compression.
3. A hierarchical auto-regressive model for image compression.

Results:
1. The proposed perceptual similarity metric aligns well with human perception of similarity.
2. The method generates image that are visually better and are useful for subsequent vision tasks such as 

object detection and image segmentation.
3. Object detection and image segmentation as an evaluation metric aligns with human perception of 

similarity.

Link to the paper: https://arxiv.org/abs/2002.04988
Link to the supplementary material: https://yash0307.github.io/SDPIC_WACV2021_Supplementary_Material.pdf
Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.

https://arxiv.org/abs/2002.04988
https://yash0307.github.io/SDPIC_WACV2021_Supplementary_Material.pdf
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Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.
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And many more…

Proxy Losses

Note: These functions are decomposable, i.e., for a prediction there is a fixed 
target.
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       Baek et al., What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis, ICCV 2019.

The loss used for the end-to-end training of scene text recognition models is per-character cross-entropy.

The evaluation metric for scene text recognition is edit distance computed using dynamic programming. 

Proxy Loss for Scene Text Recognition

Loss
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     Differentiable model   Differentiable losses

 Ren et al, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS 2015.

The regression loss used for the training of Faster R-CNN model is smooth-L1.

Proxy Loss for Object Detection



     Differentiable model   Differentiable losses

 Ren et al, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS 2015.

The regression loss used for the training of Faster R-CNN model is smooth-L1.

The bounding boxes are evaluated using IoU, which is not differentiable if the intersection cannot be 
expressed as an explicit function of predicted and ground truth bounding boxes.

Proxy Loss for Object Detection



Hand-crafting surrogate losses requires domain expertise.
Example: Axis-aligned IoU loss in object detection.

Hand-Crafted Surrogate Losses



  Yu et al, UnitBox: An Advanced Object Detection Network, ACM-MM 2016. 

The hand-crafted IoU loss has shown improvements compared to using proxy losses.

The hand-crafted IoU loss assumes that the bounding boxes are axis aligned.

Hand-Crafted Surrogate for Object Detection



Scene text detection    Object detection in Aerial Images
Karatzas et al., ICDAR 2015 competition on robust reading, ICDAR’15.                   Xia et al, DOTA: A Large-scale Dataset for Object Detection in Aerial Images, CVPR’18.

The hand-crafted IoU loss does not generalize to the rotated bounding boxes.
 

Hand-Crafted Surrogate for Object Detection



Proxy losses may not always align with the evaluation metric.
Examples: Smooth-L1, L2 loss in object detection; cross entropy loss in scene text recognition.

Hand-crafting surrogate losses require domain expertise.
Example: Axis-aligned IoU loss in object detection.

Proxy and Hand-Crafted Surrogate Losses



The surrogate is learned via a deep embedding where the Euclidean distance between the prediction
and the ground truth corresponds to the value of the evaluation metric.

Learning Surrogates via Deep Embedding

Patel et al., Learning Surrogates via Deep Embedding, ECCV 2020.



Objectives for Learning the Surrogate
The learned surrogate corresponds to the value of the evaluation metric:
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Objectives for Learning the Surrogate
The learned surrogate corresponds to the value of the evaluation metric:

The first order derivative of the learned surrogate with respect to the prediction is close to 1:

Overall loss for learning the surrogate:
 

Patel et al., Learning Surrogates via Deep Embedding, ECCV 2020.



Learning the 
surrogate

Post-tuning with
the surrogate

Post-Tuning with the Learned Surrogate

Patel et al., Learning Surrogates via Deep Embedding, ECCV 2020.



Tuning a scene text recognition model on the learned surrogate of edit distance (LS-ED) yields
up to 39% improvement on total edit distance.

  Baek et al, What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis, ICCV 2019.

Results on Scene Text Recognition

Patel et al., Learning Surrogates via Deep Embedding, ECCV 2020.



Tuning a scene text detection model on the learned surrogate of IoU for rotated bounding boxes yields
a 4.25% improvement on the F1 score.

  Ma et al, Arbitrary-Oriented Scene Text Detection via Rotation Proposals, IEEE Transactions on Multimedia 2018.

Results on Scene Text Detection

Patel et al., Learning Surrogates via Deep Embedding, ECCV 2020.



FEDS -- Filtered Edit Distance Surrogate

Yash Patel       Jiri Matas
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Quality of Approximation

Y. Patel and J. Matas, FEDS -- Filtered Edit Distance Surrogate, ICDAR 2021.



FEDS -- Filtered Edit Distance Surrogate

Y. Patel and J. Matas, FEDS -- Filtered Edit Distance Surrogate, ICDAR 2021.



FEDS -- Quantitative Results

Y. Patel and J. Matas, FEDS -- Filtered Edit Distance Surrogate, ICDAR 2021.

Synthetic Training 
data

Additional weakly 
labelled data



FEDS -- Qualitative Results

Y. Patel and J. Matas, FEDS -- Filtered Edit Distance Surrogate, ICDAR 2021.



Recall@k Surrogate Loss with Large Batches and Similarity Mixup
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IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022



Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.
● Image compression (human perception of similarity): structural similarity index, peak signal to noise 

ratio, mean squared error, etc.
● Object detection (intersection over union):  smooth-L1 distance, L2 distance.
● Scene text recognition (edit distance): per-character cross entropy, connectionist temporal classification.
● Image retrieval (mean average precision, recall@k):  contrastive loss, triplet loss, proxy NCA, etc. 

And many more…

Proxy Losses

Note: These functions are non-decomposable, i.e., for one fixed prediction 
there is no fixed target. It rather depends on comparisons within a set.



● Embedding must be trained for good ranking.
● Achieved using loss functions.

Image Retrieval Training



● Extract embeddings from query and image collection.
● Compute similarity scores.
● Rank according to relevance to the query.

Image Retrieval Inference



Recall@k
Rank of a positive instance x, given a query q

Total number of positive samples

Heaviside step function

Recall@k

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.
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Recall@k

Sigmoid with 
Temperature

large (small) temperature value leads to worse (better) 
approximation and denser (sparser) gradient.

Recall@k Surrogate (RS@k)

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.
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Recall@k

Sigmoid with 
Temperature

Recall@k 
Surrogate

large (small) temperature value leads to worse (better) 
approximation and denser (sparser) gradient.

Loss

Loss over multiple values 
of k

Recall@k Surrogate (RS@k)

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.
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Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



Recall@k 
Surrogate

Visualization for Temperatures

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



Recall@k 
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Visualization for Temperatures

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



Synthetic sample by Mixup The embedding for the virtual sample is not required in 
loss computation

Similarity Mixup (SiMix)

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.
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Synthetic sample by Mixup

Virtual sample by SiMix

The embedding for the virtual sample is not required in 
loss computation

Similarity scores between a real and a virtual sample 
can be directly computed without the embedding

Similarity scores between two virtual samples can also 
be directly computed without the embedding

Unlike other mixup techniques:
●  The embedding of “virtual” sample is never computed. This makes SiMix more computationally and memory efficient.
● The “virtual” sample is used as a positive, negative and a query.

Similarity Mixup (SiMix)

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



● Step-1: Iteratively feed-forward through the large batch and only store the embeddings (discard model activations).
● Step-2: Iteratively compute the loss.
● Step-3: Compute gradients of loss with respect to the embeddings.
● Step-4: Iteratively feed-forward through the large batch and backpropagation through the model.
● Step-5: Update model weights.

Revaud et al., Learning with Average Precision: Training Image Retrieval with a Listwise Loss, ICCV 2019.

Note: A public implementation of this training procedure does not exist. We will release it with Camera Ready. 

Training with Large Batches

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



Recall@k Surrogate Loss with Large Batches and 
Similarity Mixup

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



Datasets

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.

Datasets are diverse in the number of training examples, the number of 
classes, and the number of examples per class, ranging from class balanced 
to long-tailed.



Results - iNaturalist, SOP, VehicleID, Cars196

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.

Recall@k(%) performances. Best results are shown with bold, previous state-of-the-art with underline and relative gains over the state-of-the-art in % of error 
reduction with blue. All the methods marked with † were trained using the same pipeline by us.



Results - Revisited Oxford and Paris

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.

Performance comparison (mAP) on ROxford and RParis with 1m distractor images (R1m). Mean performance is reported across all setups or the large-scale setups 
only. ∗ denotes that the FC layer is not part of the training but is added afterward to implement whitening. Batch size is 4096 for all methods; SiMix virtually 
increases it to 10240. ResNet101 is used as a backbone for all methods.



Results - Ablation

Patel et al., Recall@k Surrogate Loss with Large Batches and Similarity Mixup, CVPR 2022.



Thank You!

For more details and applications, kindly refer to our papers:
1. Learning Surrogates via Deep Embedding, Y Patel, T Hodan, J Matas, European Conference on Computer 

Vision (ECCV) 2020.
2. Saliency Driven Perceptual Image Compression, Y Patel, S Appalaraju, R Manmatha, Winter Applications 

of Computer Vision (WACV) 2021.
3. FEDS--Filtered Edit Distance Surrogate, Y Patel, J Matas, International Conference on Document Analysis 

and Recognition (ICDAR), 2021.
4. Neural Network-based Acoustic Vehicle Counting, S Djukanović, Y Patel, J Matas, T Virtanen, European 

Signal Processing Conference (EUSIPCO), 2021.
5. Recall@k Surrogate Loss with Large Batches and Similarity Mixup, Y Patel, G Tolias, J Matas, IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

My homepage: yash0307.github.io/

http://yash0307.github.io/

