

Training Neural Networks on Non-Differentiable Losses

Yash Patel Supervisor: Professor Jiří Matas Visual Recognition Group, Czech Technical University in Prague

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Three main components of Supervised Deep Learning:

Training data

Three main components of Supervised Deep Learning:

Training data

Model

Three main components of Supervised Deep Learning:

Training data

Input layer i h₁ h₂ h₃ h₄ h₄ h₅ h₄ h₅ h₄ h₄ h₅ h₄ h₅ h₄ h₅ h₄ h₅ h₄ h₅ h₄ h₄ h₅ h₄ h₅ h₄ h₅ h₅ h₄ h₅ h₅

Model

Three main components of Supervised Deep Learning:

Using backpropagation, weights of the model are updated.

Note: The loss function needs to be differentiable for the use of chain-rule to obtain gradients with respect to the weights.

Supervised Deep Learning: Evaluation

The evaluation metric is task dependent, not algorithm dependent.

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Testing data

Input layer i h_i Output layer o Output 1 Output 1

Trained Model

Evaluation Metric

Supervised Deep Learning: Evaluation

The evaluation metric is task dependent, not algorithm dependent.

Testing data

Two cases:

- 1. The evaluation metric is **differentiable**, therefore, can be used as a loss function.
- 2. The evaluation metric is **non-differentiable**, therefore, can not be used as a loss function.

Proxy losses may not always align with the evaluation metric.

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

• Image compression (human perception of similarity): structural similarity index, peak signal to noise ratio, mean squared error, etc.

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

- Image compression (human perception of similarity): structural similarity index, peak signal to noise ratio, mean squared error, etc.
- Object detection (intersection over union): smooth-L1 distance, L2 distance.

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

- Image compression (human perception of similarity): structural similarity index, peak signal to noise ratio, mean squared error, etc.
- Object detection (intersection over union): smooth-L1 distance, L2 distance.
- Scene text recognition (edit distance): per-character cross entropy, connectionist temporal classification.

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

- Image compression (human perception of similarity): structural similarity index, peak signal to noise ratio, mean squared error, etc.
- Object detection (intersection over union): smooth-L1 distance, L2 distance.
- Scene text recognition (edit distance): per-character cross entropy, connectionist temporal classification.
- Image retrieval (mean average precision, recall@k): contrastive loss, triplet loss, proxy NCA, etc.

And many more...

Saliency Driven Perceptual Image Compression

Yash Patel^{1*} Srikar Appalaraju² R. Manmatha²

¹ Visual Recognition Group, Czech Technical University in Prague ² Amazon Web Services, Palo Alto

WACV 2021

* This research was conducted during Yash Patel's internship at AWS.

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

- Image compression (human perception of similarity): structural similarity index, peak signal to noise ratio, mean squared error, etc.
 - Note: Can you even express this as a mathematical function?
- Image retrieval (mean average precision, recall@k): contrastive loss, triplet loss, proxy NCA, etc.

And many more...

Motivation

Lower Storage Requirements

- 1. Snapchat users share 527,760/min photos.
- 2. Instagram users post 46,740/min photos.

[1] How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read, Bernard Marr, Forbes 2018.

[2] Here's How Many Digital Photos Will Be Taken in 2017, Tech Today, 2016.

[3] Towards Image Understanding from Deep Compression without Decoding, Torfason et al. ICLR 2018.

Motivation

Lower Storage Requirements

- 1. Snapchat users share 527,760/min photos.
- 2. Instagram users post 46,740/min photos.

[1] How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read, Bernard Marr, Forbes 2018.

[2] Here's How Many Digital Photos Will Be Taken in 2017, Tech Today, 2016.

[3] Towards Image Understanding from Deep Compression without Decoding, Torfason et al. ICLR 2018.

Faster Inference for subsequent tasks

(a) RGB inference

(b) compressed inference

Learning based compression methods lead to faster inference for subsequent tasks such as classification, detection and semantic segmentation.

Learning Image Compression

Learning Image Compression

Learning Image Compression

Evaluation Metrics / Proxy Losses

1. Multi-scale Structural Similarity (MS-SSIM)

For a sliding window on original and reconstructed $SSIM(x, \hat{x}) = \frac{(2 \mu_x \mu_x^2 + c_1)(2\sigma_{xx}^2 + c_2)}{(\mu_x^2 + \mu_x^2 + c_1)(\sigma_x^2 + \sigma_x^2 + c_2)}$ Aggregating SSIM at multiple scales is MS-SSIM images.

2. Peak Signal to Noise Ratio (PSNR)

$$MSE(x, \hat{x}) = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [x(i,j) - \hat{x}(i,j)]^2$$
$$PSNR = 10 \log_{10}(\frac{MAX_x^2}{MSE(x, \hat{x})})$$

Evaluation Metric Problems

Original Image

MS-SSIM/SSIM cannot distinguish slightly blurred and not-blurred versions.

Higher MS-SSIM

Mentzer et al. CVPR'18 Ballé et al. ICLR'17

BPG

JPEG-2000

LPIPS-Comp

Human Evaluations

Synchronized magnifying glass

 Image A is more similar Image B is more similar Note: We first test the evaluators on internally annotated golden set.

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.

	ſ	AlexNet-ImageNet + PSNR		73.52	
Learned perceptual similarity metrics		VGG-ImageNet + PSNR		74.39	
		LPIPS-AlexNet + PSNR		73.42	
		LPIPS-VGG + PSNR		75.02	
		LPIPS-AlexNet + MS-SSIM		72.13	
		LPIPS-VGG + MS-SSIM		72	
		AlexNet-ImageNet + MS-SSIM		73.07	
		VGG-ImageNet + MS-SSIM		73.21	
	l	LPIPS-AlexNet		72.37	
		LPIPS-VGG		71.85	
Hand-crafted metrics		AlexNet-ImageNet		73.62	
	C	VGG-ImageNet		73.31	
	J	MS-SSIM	56.12		
	l	PSNR	56.71		
		Random 50	.47		
		Human			82.06
		50	60	70 80	

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.

Compression specific learned perceptual similarity metrics

Learned perceptual similarity metrics

Hand-crafted metrics

LPIPS-Comp (Ours)-AlexNet + PSNR				80
LPIPS-Comp (Ours)-VGG + PSNR				81.9
PIPS-Comp (Ours)-AlexNet + MS-SSIM			77	7.7
LPIPS-Comp (Ours)-VGG + MS-SSIM			7	7.8
LPIPS-Comp (Ours)-AlexNet				80.93
LPIPS-Comp (Ours)-VGG				81.04
AlexNet-ImageNet + PSNR			73.52	
VGG-ImageNet + PSNR			74.39	
LPIPS-AlexNet + PSNR			73.42	
LPIPS-VGG + PSNR			75.02	
LPIPS-AlexNet + MS-SSIM			72.13	
LPIPS-VGG + MS-SSIM			72	
AlexNet-ImageNet + MS-SSIM			73.07	
VGG-ImageNet + MS-SSIM			73.21	
LPIPS-AlexNet			72.37	
LPIPS-VGG			71.85	
AlexNet-ImageNet			73.62	
VGG-ImageNet			73.31	
MS-SSIM	56.12	2		
PSNR	56.7	/1		
Random	50.47			
Human				82.06
50		60 7	0	80

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.

L

Hierarchical Auto-Regressive Model

Saliency Matters

Saliency Masking

Saliency Matters

Saliency Masking

Weighted distortion loss

Compression Results

Distortion metrics

Human Evaluations

Compression Results - Object Detection

Object Detection

Method	0.23	0.37	0.67	1.0
JPEG-2000 [37]	23.2	29.1	34.4	36.8
BPG [5]	25.2	32.5	35.4	37.7
Mentzer et al. [26]	25.5	30.2	34.5	36.6
Lee et al. [22] (MSE)	28.3	-	36.2	37.6
Lee et al. [22] (MS-SSIM)	27.2	<u>32.5</u>	-	37.6
Ours (MSE + DPL)	29.3	33.7	36.6	37.9

Object Detection on MS-COCO 2017 validation set using Faster-RCNN.

Instance Segmentation

Method	0.23	0.37	0.67	1.0
JPEG-2000 [37]	20.2	25.4	30.1	32.2
BPG [5]	22.0	28.5	30.8	32.2
Mentzer et al. [26]	9.3	10.5	11.9	22.0
Lee et al. [22] (MSE)	25.4	-	32.2	33.2
Lee et al. [22] (MS-SSIM)	25.1	<u>28.9</u>	-	33.2
Ours (MSE + DPL)	26.1	30.0	32.3	33.2

Instance segmentation on MS-COCO 2017 validation set using Mask-RCNN.

Compression Results - Qualitative

Original

Original

Mentzer et al. 2018

Ballé et al. 2017

JPEG-2000

Patel et al., Saliency Driven Perceptual Image Compression, WACV 2021.

An example from Kodak dataset at 0.23 bpp.

Conclusions

This paper makes following contributions:

- 1. An adequate compression specific perceptual similarity metric.
- 2. Incorporating saliency for image compression.
- 3. A hierarchical auto-regressive model for image compression.

Results:

- 1. The proposed perceptual similarity metric aligns well with human perception of similarity.
- 2. The method generates image that are visually better and are useful for subsequent vision tasks such as object detection and image segmentation.
- 3. Object detection and image segmentation as an evaluation metric aligns with human perception of similarity.

Link to the paper: https://arxiv.org/abs/2002.04988

Link to the supplementary material: <u>https://yash0307.github.io/SDPIC_WACV2021_Supplementary_Material.pdf</u>

Learning Surrogates via Deep Embedding

Yash Patel Tomas Hodan Jiri Matas

Visual Recognition Group, Czech Technical University in Prague

European Conference on Computer Vision (ECCV), 2020

Project webpage: https://yash0307.github.io/LS_ECCV2020

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

- Image compression (human perception of similarity): structural similarity index, peak signal to noise ratio, mean squared error, etc.
- Object detection (intersection over union): smooth-L1 distance, L2 distance.
- Scene text recognition (edit distance): per-character cross entropy, connectionist temporal

• Note: These functions are decomposable, *i.e.*, for a prediction there is a fixed Ar target.
Proxy Loss for Scene Text Recognition

Baek et al., What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis, ICCV 2019.

The loss used for the end-to-end training of scene text recognition models is per-character **cross-entropy**.

Proxy Loss for Scene Text Recognition

Baek et al., What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis, ICCV 2019.

The loss used for the end-to-end training of scene text recognition models is per-character **cross-entropy**.

		k	i	t	t	е	n
	0	1	2	3	4	5	6
s	1	1	2	3	4	5	6
i	2	2	1	2	3	4	5
t	3	3	2	1	2	3	4
t	4	4	3	2	1	2	3
i	5	5	4	3	2	2	3
n	6	6	5	4	3	3	2
g	7	7	6	5	4	4	3

The evaluation metric for scene text recognition is **edit distance** computed using dynamic programming.

Proxy Loss for Scene Text Recognition

www.shutters	tock.com		put	Erak	<u>V ve</u>	
GT: wwwshutte	erstockcom	GT: 1	illiput	GT: fr	ikkie	
M1: wonnishultersock	: wonnishultersock Acc.=0, ED=9		Acc.=0, ED=5	M1: exikive	Acc.=0, ED=4	
M2: wnwishuttersockcom	Acc.=0, ED=3	M2: lilidut	Acc.=0, ED=2	M2: erikkie	Acc.=0, ED=1	
www.vtrj	t.com	6000	el l'Infre	Mapusoran		
GT: wwwvt	rjtcom	GT: gu	iucliinc	GT: napa	asorn	
M1: wwwitcom	: www.itcom Acc.=0, ED=4		M1: guidglitus Acc.=0, ED=5		Acc.=0, ED=3	
M2: www.vtritcom	Acc.=0, ED=1	M2: guiuclitu	c Acc.=0, ED=2	M2: napasozn	Acc.=0, ED=1	
M1: Total Accu	uracy = 0, Total E	D = 30	M2: Total A	ccuracy = 0, Total 1	ED = 10	

Proxy Loss for Object Detection

Ren et al, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS 2015.

The regression loss used for the training of Faster R-CNN model is **smooth-L1**.

Proxy Loss for Object Detection

Ren et al, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS 2015.

The regression loss used for the training of Faster R-CNN model is **smooth-L1**.

The bounding boxes are evaluated using **loU**, which is not differentiable if the intersection cannot be expressed as an explicit function of predicted and ground truth bounding boxes.

Hand-Crafted Surrogate Losses

Hand-crafting surrogate losses requires domain expertise. Example: Axis-aligned IoU loss in object detection.

Hand-Crafted Surrogate for Object Detection

Yu et al, UnitBox: An Advanced Object Detection Network, ACM-MM 2016.

The hand-crafted IoU loss has shown improvements compared to using proxy losses.

The hand-crafted IoU loss assumes that the bounding boxes are axis aligned.

Hand-Crafted Surrogate for Object Detection

Scene text detection Karatzas et al., ICDAR 2015 competition on robust reading, ICDAR'15.

Object detection in Aerial Images

Xia et al, DOTA: A Large-scale Dataset for Object Detection in Aerial Images, CVPR'18.

The hand-crafted IoU loss does not generalize to the rotated bounding boxes.

Proxy and Hand-Crafted Surrogate Losses

Proxy losses may not always align with the evaluation metric.

Examples: Smooth-L1, L2 loss in object detection; cross entropy loss in scene text recognition.

Hand-crafting surrogate losses require domain expertise.

Example: Axis-aligned IoU loss in object detection.

Learning Surrogates via Deep Embedding

The surrogate is learned via a deep embedding where the Euclidean distance between the prediction and the ground truth corresponds to the value of the evaluation metric.

Objectives for Learning the Surrogate

CZECH TECHNICAL UNIVERSITY IN PRAGUE

The learned surrogate corresponds to the value of the evaluation metric:

 $e(z,y) \approx \hat{e}_{\Phi}(z,y)$

Objectives for Learning the Surrogate

The learned surrogate corresponds to the value of the evaluation metric:

$$e(z,y) \approx \hat{e}_{\Phi}(z,y)$$

The first order derivative of the learned surrogate with respect to the prediction is close to 1:

$$\left\|\frac{\partial \hat{e}_{\Phi}(z,y)}{\partial z}\right\|_{2} \approx 1$$

Objectives for Learning the Surrogate

The learned surrogate corresponds to the value of the evaluation metric:

$$e(z,y) \approx \hat{e}_{\Phi}(z,y)$$

The first order derivative of the learned surrogate with respect to the prediction is close to 1:

$$\left\|\frac{\partial \hat{e}_{\Phi}(z,y)}{\partial z}\right\|_{2} \approx 1$$

Overall loss for learning the surrogate:

$$\left\|\left(\hat{e}_{\Phi}(z,y) - e(z,y)\right\|_{2}^{2} + \lambda\left(\left\|\frac{\partial\hat{e}_{\Phi}(z,y)}{\partial z}\right\|_{2} - 1\right)^{2}\right\|_{2}$$

Post-Tuning with the Learned Surrogate

Algorithm 1 Training with LS (local-global approximation) **Inputs**: Supervised data D, random data generator R, evaluation metric e. **Hyper-parameters**: Number of update steps I_a and I_b , learning rates η_a and η_b , number of epochs E. **Objective:** Train the model for a given task that is $f_{\Theta}(x)$ and the surrogate *i.e.*, e_{Φ} . 1: Initialize $\Theta \leftarrow$ pre-trained weights, $\Phi \leftarrow$ random weights. 2: for epoch = 1,...,E do for $i = 1, \dots, I_a$ do sample $(x, y) \sim r_D$, sample $(x, y) \sim r_D$, sample $(x, y) \sim r_D$, sample (x, y) inference $z = f_{\Theta^{epoch-1}}(x)$ compute loss $l_{\hat{e}} = loss(z, y) + loss(z_r, y_r)$ (Equation 6) $\pi^{i} - n_a \frac{\partial l_{\hat{e}}}{\partial \pi^{i-1}}$ 5: 6: 7: 8: $\Phi \leftarrow \Phi^{I_a}$ 9: 10: for $i = 1, \dots, I_b$ do sample $(x, y) \sim P_D$ inference $z = f_{\Theta^{i-1}}(x)$ 11: 12: compute loss $l_f = \hat{e}_{\Phi^{epoch}}(z, y)$ (Equation 3) 13: $\Theta^i \leftarrow \Theta^{i-1} - \eta_b \frac{\partial(l_f)}{\partial \Theta^{i-1}}$ 14: 15: end for $\Theta \leftarrow \Theta^{I_b}$ 16: 17: end for

Learning the surrogate

Post-tuning with the surrogate

Results on Scene Text Recognition

Tuning a scene text recognition model on the learned surrogate of edit distance (LS-ED) yields up to **39% improvement** on total edit distance.

Test Data	Loss Function	\uparrow Acc.	\uparrow NED	\downarrow TED
IIIT-5K IIIT-5K	Cross-Entropy LS-ED	84.300 86.300 +2.37%	0.954 0.953 -0.10%	$945 \\ 837 + 11.42\%$
SVT SVT	Cross-Entropy LS-ED	$\frac{84.699}{86.399} + 2.00\%$		$229 \\ 196 + 14.41\%$
ICDAR'03 ICDAR'03	Cross-Entropy LS-ED	$92.558 \\ 94.070 + 1.63\%$		$151 \\ 119 + 26.89\%$
ICDAR'13 ICDAR'13	Cross-Entropy LS-ED	89.754 91.133 + 1.53%		$260 \\ 157 + 39.61\%$
ICDAR'15 ICDAR'15	Cross-Entropy LS-ED	71.452 74.655 + 4.48%		$\frac{1135}{1013 + 10.74\%}$
SVTP SVTP	Cross-Entropy LS-ED	74.10977.519 + 4.60%		$\frac{424}{381 + 10.14\%}$
CUTE CUTE	Cross-Entropy LS-ED	$\begin{array}{r} 68.293 \\ 71.777 + 5.10\% \end{array}$	$0.838 \\ 0.868 + 3.57\%$	$285 \\ 234 + 17.89\%$

Baek et al, What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis, ICCV 2019. Patel et al., Learning Surrogates via Deep Embedding, ECCV 2020.

Results on Scene Text Detection

Tuning a scene text detection model on the learned surrogate of IoU for rotated bounding boxes yields a **4.25% improvement** on the F1 score.

Loss Function	\uparrow Recall	\uparrow Precision	$\uparrow F_1$ score
$Smooth-L_1$ LS-IoU	$71.21\% \\ 76.79\% + 7.83\%$	$\frac{84.71\%}{84.93\%} + 0.25\%$	$\begin{vmatrix} 77.37\% \\ 80.66\% + 4.25\% \end{vmatrix}$

Ma et al, Arbitrary-Oriented Scene Text Detection via Rotation Proposals, IEEE Transactions on Multimedia 2018.

FEDS -- Filtered Edit Distance Surrogate

Yash Patel Jiri Matas

Visual Recognition Group, Czech Technical University in Prague

International Conference on Document Analysis and Recognition (ICDAR), 2021

Quality of Approximation

Training iterations from 8K to 10K

FEDS -- Filtered Edit Distance Surrogate

FEDS -- Quantitative Results

-	Test Data	Loss Function	↑ Acc.	↑ NED	↓ TED	
Synthetic Training data	TOTAL	Cross-Entropy [1] LS-ED [29] FEDS	85.6 86.1 + 0.61% 86.5 + 0.98%	$\begin{array}{c} 0.941 \\ 0.942 + 0.18\% \\ 0.946 + 0.48\% \end{array}$	$\begin{array}{r} 4079\\ 3832+6.05\%\\ 3623+11.2\%\end{array}$	
Additional weakly labelled data	TOTAL	Cross-Entropy [1] LS-ED [29] FEDS	88.7 89.0 + 0.41% 89.6 + 1.01%	$\begin{array}{c} 0.953 \\ 0.954 + 0.62\% \\ 0.956 + 0.35\% \end{array}$	3050 2961 + 2.91% 2809 + 7.90%	

FEDS -- Qualitative Results

Recall@k Surrogate Loss with Large Batches and Similarity Mixup

Yash Patel Giorgos Tolias Jiri Matas

Visual Recognition Group, Czech Technical University in Prague

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022

Proxy Losses

Proxy losses may not always align with the evaluation metric.

Evaluation metric in green, proxy loss functions in blue.

Note: These functions are non-decomposable, *i.e.*, for one fixed prediction

per envirence eroop erre

- there is no fixed target. It rather depends on comparisons within a set.
- Image retrieval (mean average precision, recall@k): contrastive loss, triplet loss, proxy NCA, etc.

And many more...

Image Retrieval Training

- Embedding must be trained for good ranking.
- Achieved using loss functions.

Image Retrieval Inference

- Extract embeddings from query and image collection.
- Compute similarity scores.
- Rank according to relevance to the query.

Recall@k

Query	Ranked Database Images										
	1	2	3	4	5	6	7	8	9	10	
		1	F	Ż			-				
Similarity: recall@4	0.940 = 0.33	<mark>0.870</mark> 3, recal	0.850 1@8 =	<mark>0.800</mark> 0.67	0.775	0.650 rs@	0.570 04 = 0.	<mark>0.430</mark> 310, rs	0.400 s@8 =	0.320 0.616	

Recall@k Surrogate

$$\tilde{R}_{\Omega}^{k}(q) = \frac{\sum\limits_{x \in P_{q}} \sigma_{\tau_{1}}(k-1-\sum\limits_{\substack{z \in \Omega \\ z \neq x}} \sigma_{\tau_{2}}(s_{qz}-s_{qx}))}{|P_{q}|}$$

Query		Ranked Database Images									
	1	2	3	4	5	6	7	8	9	10	
	M	1	F	Z			-				
Similarity: recall@4	0.940 = 0.3	0.870 3, reca	0.850 1@8 =	0.800 0.67	0.775	0.650 rs@	0.570 04 = 0.	0.430 .310, rs	0.400 s@8 =	0.320 0.616	
		1	F	Ż	Ŷ		-				
Similarity: recall@4	0.940	0.870 3, reca	0.850	0.800 0.67	0.775	0.774 rs@	0.570 04 = 0.	0.430 .315, rs	0.400 s@8 =	0.320 0.632	

Recall@k Surrogate

$$\tilde{R}^k_{\Omega}(q) = \frac{\sum\limits_{x \in P_q} \sigma_{\tau_1}(k - 1 - \sum\limits_{\substack{z \in \Omega \\ z \neq x}} \sigma_{\tau_2}(s_{qz} - s_{qx}))}{|P_q|}$$

Query		Ranked Database Images									
	1	2	3	4	5	6	7	8	9	10	
		1	P	Ż			M				
Similarity: recall@4	0.940 = 0.33	0.870 3, recal	0.850 @8 =	0.800 0.67	0.775	0.650 rs@	0.570 04 = 0.	<mark>0.430</mark> 310, rs	0.400 s@8 =	0.320 0.616	
		1	P	Ż			1				
Similarity:	0.940	0.870	0.850	0.800	0.775	0.774	0.570	0.430	0.400	0.320	
recall@4	= 0.33	3, recal	1@8 =	0.67		rs@	@4 = 0.	315, rs	s@8 =	0.632	
Circuite eite ei	0.040	0.070	0.050	0.000	0.700	0.775	0.570	0.420	0.400	0.000	

Similarity: 0.940 0.870 0.850 0.800 0.790 0.775 0.570 0.430 0.400 0.320 rs@4 = 0.334, rs@8 = 0.666

recall@4 = 0.33, recall@8 = 0.67

 $\tilde{R}^k_{\Omega}(q) = \frac{\sum\limits_{x \in P_q} \sigma_{\tau_1}(k-1-\sum\limits_{\substack{z \in \Omega \\ z \neq x}} \sigma_{\tau_2}(s_{qz}-s_{qx}))}{|P_q|}$

Query			Ran	ked Da	atabas	e Imag	ges			
	1	2	3	4	5	6	7	8	9	10
		1	ß	Ż			-		M	
Similarity: recall@4	0.940 4 = 0.3	0.870 3, recal	0.850 @8 =	0.800 0.67	0.775	0.650 rs@	0.570 04 = 0.	0.430 .310, rs	0.400 @8 =	0.320 0.616
		1	F	Z			-			
Similarity: recall@4	0.940 4 = 0.3	0.870 3, recal	0.850 @8 =	0.800 0.67	0.775	0.774 rs@	0.570 04 = 0.	<mark>0.430</mark> .315, rs	0.400 @8 =	0.320 0.632
		1	F	Ż						
Similarity: recall@4	0.940 4 = 0.3	0.870 3, recal	0.850 @8 =	0.800 0.67	<u>0.790</u>	0.775 rs@	0.570 04 = 0	0.430 .334, rs	0.400 @8 =	0.320 0.666
			1	F		Z				
Similarity: recall@4	0.940 4 = 0.6	<u>0.880</u> 7, recal	0.870 @8 =	0.850 1.0	<u>0.820</u>	0.800 rs@	0.775 04 = 0.	0.570 .577, rs	<mark>0.430</mark> @8 =	0.320 0.957
Figure 1.	Ac	compa	rison	betv	veen	recal	@k a	and r	s@k,	the p
osed dif	ferent	tiable	recal	1@k	surro	rate	Evan	nles	show	a me

Figure 1. A comparison between recall@k and rs@k, the proposed differentiable recall@k surrogate. Examples show a query, the ranked database images sorted according to the similarity and the corresponding values for recall@k and rs@k and their dependence on similarity score change. Note that the values of recall@k and rs@k are close. Changes to similarity and ranking in some cases may not affect the original recall@k but can affect the surrogate, with the latter having a more significant impact than the former. Similarity values of all negatives are fixed for ease of understanding. The similarity values of the positives that were changed in rows 2, 3 and 4 are underlined.

Recall@k Surrogate

$$ilde{R}^k_\Omega(q) = rac{\displaystyle\sum\limits_{x\in P_q}\sigma_{ au_1}(k-1-\displaystyle\sum\limits_{\substack{z\in\Omega\z
eq x}}\sigma_{ au_2}(s_{qz}-s_{qx}))}{|P_q|}$$
Visualization for Temperatures

Visualization for Temperatures

Synthetic sample by Mixup
$$\mathbf{v}_{xz\alpha} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{z} \mid \alpha \sim U(0, 1),$$
 The embedding for the virtual sample is not required in loss computation

The embedding for the virtual sample is not required in

 $\mathbf{v}_{xz\alpha} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{z} \quad | \quad \alpha \sim U(0, 1),$ Synthetic sample by Mixup loss computation $s(w, xz\alpha) = \mathbf{w}^{\top}\mathbf{v}_{xz\alpha} = \alpha s_{wx} + (1 - \alpha)s_{wz},$ Similarity scores between a real and a virtual sample score between a real and a virtual score between a real and Virtual sample by SiMix can be directly computed without the embedding

The embedding for the virtual sample is not required in

Synthetic sample by Mixup
$$\mathbf{v}_{xz\alpha} = \alpha \mathbf{x} + (1 - \alpha)\mathbf{z}$$
 $\alpha \sim U(0, 1), -----$ In concerning for the virtual sample is not requires in loss computation set of the virtual sample is not requires in Virtual sample by SiMix $s(w, xz\alpha) = \mathbf{w}^{\top}\mathbf{v}_{xz\alpha} = \alpha s_{wx} + (1 - \alpha)s_{wz}, -----$ Similarity scores between a real and a virtual sample can be directly computed without the embedding

1 77(0 1)

. 1.

1

$$s(xz\alpha_1, yw\alpha_2) = \mathbf{v}_{xz\alpha_1}^{\top} \mathbf{v}_{yw\alpha_2}$$

= $\alpha_1 \alpha_2 s_{xy} + (1 - \alpha_1)(1 - \alpha_2) s_{zw}$ Similarity scores between two virtual samples can also be directly computed without the embedding + $\alpha_1(1 - \alpha_2)s_{xw} + (1 - \alpha_1)\alpha_2 s_{zy}$.

The embedding for the virtual sample is not required in

Synthetic sample by Mixup
$$\mathbf{v}_{xz\alpha} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{z} | \alpha \sim U(0, 1),$$
 The embedding for the virtual sample is not required in loss computation
Virtual sample by SiMix $s(w, xz\alpha) = \mathbf{w}^{\top} \mathbf{v}_{xz\alpha} = \alpha s_{wx} + (1 - \alpha) s_{wz},$ Similarity scores between a real and a virtual sample can be directly computed without the embedding

$$s(xz\alpha_1, yw\alpha_2) = \mathbf{v}_{xz\alpha_1}^{\top} \mathbf{v}_{yw\alpha_2}$$

= $\alpha_1 \alpha_2 s_{xy} + (1 - \alpha_1)(1 - \alpha_2) s_{zw}$ Similarity scores between two virtual samples can also be directly computed without the embedding + $\alpha_1(1 - \alpha_2)s_{xw} + (1 - \alpha_1)\alpha_2 s_{zy}$.

Unlike other mixup techniques:

~

The embedding of "virtual" sample is never computed. This makes SiMix more computationally and memory efficient. .

 $T_{1}(0,1)$

The "virtual" sample is used as a positive, negative and a query. •

Training with Large Batches

- **Step-1**: Iteratively feed-forward through the large batch and only store the embeddings (discard model activations).
- Step-2: Iteratively compute the loss.
- Step-3: Compute gradients of loss with respect to the embeddings.
- **Step-4**: Iteratively feed-forward through the large batch and backpropagation through the model.
- Step-5: Update model weights.

Revaud et al., Learning with Average Precision: Training Image Retrieval with a Listwise Loss, ICCV 2019.

Note: A public implementation of this training procedure does not exist. We will release it with Camera Ready.

Recall@k Surrogate Loss with Large Batches and Similarity Mixup

Algorithm 1 Training with RS@k and SiMix. 1: procedure TRAIN-RS@K(X, Y, M, m)X: training images Y: class labels 3: M: mini-batch size m: number of images per class in mini-batch 6: $\theta \leftarrow$ initialize according to pre-training ▷ use ImageNet for iteration $\in [1, \ldots, number-of-iterations]$ do 8: 9: $loss \leftarrow 0$ ▷ set batch loss to zero 10: $B \leftarrow \text{BATCH-SAMPLER}(X, Y, M, m)$ $\hat{B} \leftarrow \text{VIRTUAL-BATCH}(B)$ > enumerate virtual examples 11: 12: for $(x, z) \in B \times B$ do compute s(x, z) \triangleright use $\mathbf{x}^{\top}\mathbf{z}$ for $(x, z) \in B \times \hat{B}$ do compute s(x, z)13: \triangleright use (9) for $(x, z) \in \hat{B} \times \hat{B}$ do compute s(x, z)14: \triangleright use (10) $B \leftarrow B \cup \hat{B}$ > expand batch with virtual examples 15: for $q \in B$ do \triangleright use each image in the batch as query 16: $loss \leftarrow loss + L^K(q)$ 17: \triangleright Recall@k loss (7) 18: end for $\theta \leftarrow \text{MINIMIZE}(\frac{loss}{|B|})$ 19: ▷ SGD update 20: end for 21: end procedure

Datasets

Dataset	#Images	#Classes	#Avg
iNaturalist Train [58]	325,846	5,690	57.3
iNaturalist Test [58]	136,093	2,452	55.5
VehicleID Train [28]	110, 178	13,134	8.4
VehicleID Test [28]	40,365	4,800	8.4
SOP Train [37]	59, 551	11, 318	5.3
SOP Test [37]	60, 502	11, 316	5.3
Cars196 Train [26]	8,054	98	82.1
Cars196 Test [26]	8,131	98	82.9
ROxford [42]	4,993	11	n/a
RParis [42]	6,322	11	n/a
GLDv1 [36]	1,060,709	12,894	82.3

Datasets are diverse in the number of training examples, the number of classes, and the number of examples per class, ranging from class balanced to long-tailed.

Results - iNaturalist, SOP, VehicleID, Cars196

		il	Natura	list [58	3]	SOP [37] VehicleID [28]				Cars196 [26]									
Method	Arch.dim								r@k							50 			
										Sn	nall	Med	lium	La	rge				
		1	4	16	32	10^{0}	10^{1}	10^{2}	10^{3}	1	5	1	5	1	5	1	2	4	8
ProxyNCA [33]	I_1^{128}	61.6	77.4	87.0	90.6	73.7	-		-	-	-	-	-	-	-	73.2	82.4	86.4	88.7
Margin [66]	R_{50}^{128}	58.1	75.5	86.8	90.7	72.7	86.2	93.8	98.0	-	-	12	-	-	-	<u>79.6</u>	86.5	<u>91.9</u>	95.1
Divide [50]	R_{50}^{128}	2	-	-	-	75.9	88.4	94.9	98.1	87.7	92.9	85.7	90.4	82.9	90.2	-	-	-	-
MIC [47]	R_{50}^{128}	-	-	-	-	77.2	89.4	95.6	-	86.9	93.4	-	-	82.0	91.0	-	-	-	-
Cont. w/M [64]	R_{50}^{128}	-	-	-	-	80.6	91.6	96.2	98.7	94.7	96.8	93.7	95.8	<u>93.0</u>	95.8	-	-	-	-
RS@k [†]	R_{50}^{128}	69.3	82.9	90.6	93.1	80.6	91.6	96.4	98.8	95.6	97.8	94.4	96.8	93.5	96.6	78.1	85.8	91.1	94.5
RS@k [†] +SiMix	R_{50}^{128}	69.6	83.3	91.2	93.8	80.9	91.7	96.5	98.8	95.4	97.5	93.8	96.6	93.0	96.2	84.7	90.9	94.7	96.9
	1000	+21%	+26%	+32%	+33%	+1.5%	+1.2%	+7.9%	+7.7%	+17%	+31%	+11%	+24%	+7.1%	+19%	+25%	+33%	+35%	+37%
FastAP [7]	R_{50}^{512}	60.6	77.0	87.2	90.6	76.4	89.0	95.1	98.2	91.9	96.8	90.6	95.9	87.5	95.1		-	-	-
MS [63]	I_3^{512}	-	-	-	-	78.2	90.5	96.0	98.7	-	-	-	-	-	-	84.1	90.4	94.0	96.1
NormSoftMax [68]	R_{50}^{512}	-	-	-	-	78.2	90.6	96.2	-	-	-	-	-	-	-	84.2	90.4	94.4	96.9
Blackbox AP [46]	R_{50}^{512}	62.9	79.0	88.9	92.1	78.6	90.5	96.0	98.7	-	-	-	-	-	-	-	-	-	-
Cont. w/M [64]	I_3^{512}	-	-	-	-	79.5	90.8	96.1	98.7	94.6	96.9	93.4	96.0	<u>93.0</u>	96.1	-	-	-	-
HORDE [23]	R_{50}^{512}	-	-	-	-	80.1	91.3	96.2	-	-	-	-	-	-	-	86.2	91.9	95.1	97.2
ProxyNCA++ [55]	R_{50}^{512}	-	-	-	-	80.7	92.5	96.7	98.9	-	-	-	-	-	-	86.5	92.5	95.7	97.7
SAP [6]	R_{50}^{512}	67.2	81.8	90.3	93.1	80.1	91.5	<u>96.6</u>	99.0	94.9	97.6	93.3	96.4	91.9	96.2	76.1	84.3	89.8	93.8
SAP [†] [6] +GeM +LN	NR_{50}^{512}	68.7	82.7	90.9	93.5	80.3	92.0	96.9	99.0	94.2	97.2	92.7	96.2	91.0	95.8	78.2	85.6	90.8	94.3
RS@k [†]	R_{50}^{512}	71.2	84.0	91.3	93.6	82.8	92.9	97.0	99.0	95.7	97.9	94.6	96.9	93.8	96.6	80.7	88.3	92.8	95.7
RS@k [†] +SiMix	R_{50}^{512}	71.8	84.7	91.9	94.3	82.1	92.8	97.0	99.1	95.3	97.7	94.2	96.5	93.3	96.4	88.2	93.0	95.9	97.4
		+14%	+16%	+16%	+17%	+11%	+5.3%	+12%	+10%	+16%	+13%	+18%	+14%	+11%	+10%	+13%	+6.7%	+4.7%	-13%
SAP [†] [6]	ViT-B/32 ⁵¹²	72.2	84.6	91.6	93.9	83.7	94.0	97.8	99.3	94.8	97.7	93.5	96.8	92.1	96.3	78.1	85.7	91.0	94.8
RS@k [†]	ViT-B/32 ⁵¹²	75.9	87.1	93.1	95.1	85.1	94.6	98.0	99.3	95.1	97.7	94.1	96.7	93.2	96.5	78.1	86.4	92.3	95.6
SAP [†] [6]	ViT-B/16 ⁵¹²	79.1	89.0	94.2	95.8	86.6	95.4	98.4	99.5	95.5	97.7	94.2	96.9	93.1	96.6	86.2	92.1	95.1	97.2
RS@k [†]	ViT-B/16 ⁵¹²	83.9	92.1	95.9	97.2	88.0	96.1	98.6	99.6	96.2	98.0	95.2	97.2	94.7	97.1	89.5	94.2	96.6	98.3

Recall@k(%) performances. Best results are shown with bold, previous state-of-the-art with underline and relative gains over the state-of-the-art in % of error reduction with blue. All the methods marked with † were trained using the same pipeline by us.

Results - Revisited Oxford and Paris

Arab	Loss	Train set		Mean		$\mathcal{R}O$		$\mathcal{R}O+\mathcal{R}1M$		\mathcal{R} Par		$\mathcal{R}P+\mathcal{R}1M$	
AICII.	LOSS	Train-set		all	\mathcal{R} 1M	med	hard	med	hard	med	hard	med	hard
GeM*	AP [19]	Landmarks-clean [2] [14]	[44]/ [56]	49.7	36.7	67.1	42.3	47.8	22.5	80.3	60.9	51.9	24.6
GeM*	AP [19]	GLDv1 [36]	[44]/github	-	-	66.3	42.5	-	-	80.2	60.8	-	-
GeM [†]	SAP [6]	GLDv1 [36]	[6]	52.7	40.6	67.9	46.3	49.5	25.8	81.7	63.3	57.4	29.8
GeM [†]	RS@k	GLDv1 [36]	ours	53.1	41.0	68.3	46.1	50.1	25.8	82.1	63.9	57.9	30.2
GeM+SiMix [†]	RS@k	GLDv1 [36]	ours	53.1	41.8	68.4	45.3	51.0	26.4	81.2	62.4	58.7	31.1

Performance comparison (mAP) on ROxford and RParis with 1m distractor images (R1m). Mean performance is reported across all setups or the large-scale setups only. * denotes that the FC layer is not part of the training but is added afterward to implement whitening. Batch size is 4096 for all methods; SiMix virtually increases it to 10240. ResNet101 is used as a backbone for all methods.

Results - Ablation

Method	r@1	r@2	r@4	r@8	r@16	Avg
$RS@\{1\}^{\dagger}$	81.1	87.7	92.0	95.0	96.9	90.5
$RS@\{1,2\}^\dagger$	80.2	87.2	91.9	95.0	97.2	90.3
$RS@\{1,2,4\}^{\dagger}$	79.6	86.5	91.2	94.5	96.8	89.7
$RS@\{1,2,4,8\}^\dagger$	79.3	86.3	91.0	94.5	96.9	89.6
$RS@\{1, 2, 4, 8, 16\}^{\dagger}$	80.8	87.6	92.2	95.0	97.1	90.5
$RS@\{2,4,8,16\}^\dagger$	80.3	87.5	92.3	95.4	97.5	90.6
$RS@\{4, 8, 16\}^{\dagger}$	79.6	87.1	91.7	95.0	97.3	90.1
$RS@\{8, 16\}^{\dagger}$	79.6	87.1	91.7	95.0	97.3	90.1
$RS@{16}^{\dagger}$	75.8	83.9	89.8	93.6	96.4	87.9

varying batch size

Thank You!

For more details and applications, kindly refer to our papers:

- 1. Learning Surrogates via Deep Embedding, <u>Y Patel</u>, T Hodan, J Matas, European Conference on Computer Vision (ECCV) 2020.
- 2. Saliency Driven Perceptual Image Compression, <u>Y Patel</u>, S Appalaraju, R Manmatha, Winter Applications of Computer Vision (WACV) 2021.
- 3. FEDS--Filtered Edit Distance Surrogate, <u>Y Patel</u>, J Matas, International Conference on Document Analysis and Recognition (ICDAR), 2021.
- 4. Neural Network-based Acoustic Vehicle Counting, S *Djukanović*, <u>Y Patel</u>, J Matas, T Virtanen, European Signal Processing Conference (EUSIPCO), 2021.
- *5.* Recall@k Surrogate Loss with Large Batches and Similarity Mixup, <u>Y Patel</u>, G Tolias, J Matas, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

My homepage: yash0307.github.io/