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Problem statement

We assume a set of samples {x;|x; € X'}_;.

We want to fit a model p(x|6)by maximizing likelihood
arg max z,: log p(x;|6)

such that
» p(x|0) is a valid probability distribution
> p(x|0) is tractable,



What is tractability?

The model p(x) is tractable with respect to f € F if the integral

| Feop(xl6)ax.

can by computed in polynomial time with respect to the size of
p(x|0).



Tractability
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Sum-Product networks

» in leaf node L(x)
p(x) = p(x|6L)

» in sum node S(x)

p(x)= D wnpn(xyn))
Nech(S)

» in product node P(x)

p(x) = H pn(N ()

Nech(P)

1(N) is a scoping function.



Special cases of SPNs

> Mixture model
n
p(X) = wipi(x), Y wi=1
i=1 '
» Product of marginals (naive bayes)
n
p(x) = I pilx)
i=1
» Diagonal mixtures

p(X) = Z Wi H pij(X))

=1 j=1



Are SPNs useful?




Are SPNs useful?




Scoping function

Scoping function ¥ (N) is used to specify a subspace on which the
distribution of a given node is defined.

Example

Let, X = R", but the node L operates just on features (x1, x5, Xp),
the scope function ¥(L) = (x1, x5, Xg)-



Tractability



Tractability of SPNs

Sum-Product networks are tractable
> if they are smooth and decomposable

» and for query f holds

f(x) = H fu(tu),
Yu€U{(L)}

where

> U{y(L)} is the set of all possible scopes of leafnodes
» probability distribution of leafnodes are tractable



Smoothing and Decomposability

» Smootheness: All childs of sumnode S has to have the same
scope as S, i.e.

Y(a1) = ¢¥(a2) Va1, a» € ch[S],
and weights w; > 0 and ), wi = 1.
» Decomposability: Scopes od childs of productnode P are

pairwise disjoint
N v(a) =0,
acch[P]

but complete ¥(P) = U,ccnip) ¥(a)-
» The scope of rootnode R is over all features, 1(R) = [P].



Recursive computation of integrals

For smooth and decomposable SPNs,
the integral | = [ f(x)p(x)dx can be computed recursively as
follows:

Zcech(u) wy cle, forues,
Iy = HCECh(u) ICv for ue P,
J fu(bu)pu(tbu)dipy, for u €L,



Hierarchically-Structured trees

also called Hierarchical Multi-Instance Learning



Motivation

{
services: [
{
port: 22,
protocol: tcp
1,
{
port: 4070,
protocol: tcp
1,
{
port: 4071,
protocol: tcp
1,
{
port: 5353,
protocol: udp
1,

device_id: 8bb8971c-5983-4baa-9753-f0ac21faf162,

ip: 192.168.1.80,

mac: ac:63:be:ab:50:43,

mdns_services: [_workstation._tcp.local., _ssh._tcp.local., _sftp-ssh._tcp.local.]



Motivation — semantic tree
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Motivation — logic
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Motivation — abstract syntax tree
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Motivation — general graph
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Errica, Federico, and Mathias Niepert. "Tractable Probabilistic Graph
Representation Learning with Graph-Induced Sum-Product Networks.”, 2023.



Types of nodes

services: [

port: 22,
protocol: tcp
},
{
port: 4070,
protocol: tcp . . .
2 » Dictionaries
port: 4071,

| oot ap > Lists (sets)

R > Leafs

protocol: udp
3,
device_id: 8bb8971c-5983-4baa-9753-f0ac21faf162,
ip: 192.168.1.80,
mac: ac:63:be:a5:50:43,
mdns_services: [_workstation._tcp.local., _ssh._tcp.local., _sftp-ssh._tcp.local.]



Set node

» Set node computes a probability density over a hyper-space
X=Up X x...xX
—_——
m

» probability density of a set node B is computed as

pe(x) = p(m)c™mlp(x1, ..., Xm)

where
» p(m) is a cardinality distribution
> p(x) is a probability distribution on X’
> c is a constant for unit normalization



Why the factorial?

» \We need probability distribution on sets {xi,...,xn}, but
p(x1,...,Xm) is a probability distribution on Cartesian space.

» We define distribution on sets as

p({Xh s 7Xm}) - Z p(Xﬂ'(l)7 s 7X7r(m))

mTeperm

> If p is exchengeable, it can be simplified to
p({X17 e aXm}) = m!psym(xlv e 7Xm)

» cluster model

p({x1,... s Xm}) = m! H p(xi)
i=1



Construction of Sum-Product-Set network
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Recursive computation of integrals

For smooth and decomposable SPSNs,
the integral [ f(x)p(x)dx can be computed recursively as follows:

S op(k)II i, for u€B,
EcECh(u) Wu,clc, forues,
[Teech(u) fes for u € P,
f fu(¢u)pu(¢u)d¢u, for u € L,



Experimental comparison

dataset MLP GRU LSTM HMIL SPSN
chess  0.41£0.03 0.41+0.05 0.3410.04 0.39+0.02 0.39+0.03
citeseer 0.6940.02 0.7440.01 0.7440.02 0.75+0.01 0.75+0.01
cora 0.75+0.03 0.8640.01 0.84+0.01 0.85+0.00 0.86+0.01

genes 0.99+0.01 1.00+0.01 0.98+0.01 1.00+£0.01 0.95+0.01
hepatitis 0.86+£0.02 0.88+0.01 0.87£0.03 0.88+0.02 0.88+0.02
mutagenesis 0.84+0.02 0.83+0.02 0.82+0.04 0.83+0.00 0.84+0.02
uwcse 0.8440.02 0.87+0.03 0.85+0.02 0.86+0.03 0.84+0.02
webkp 0.77+0.02 0.8240.01 0.81+0.02 0.82+0.01 0.8140.02

rank 3.62 1.62 3.88 1.62 2.38




Conclusion

» We have extended SPNs to a class of HS-tres (HMIL)

» It is the first generative model for this class of problems.
» Seems to deliver similar accuracy to non-tractable models.
> |s it useful?



