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Problem statement

We assume a set of samples {xi |xi ∈ X }n
i=1.

We want to fit a model p(x |θ)by maximizing likelihood

arg max
θ

∑
i

log p(xi |θ)

such that
▶ p(x |θ) is a valid probability distribution
▶ p(x |θ) is tractable,



What is tractability?

The model p(x) is tractable with respect to f ∈ F if the integral∫
X

f (x)p(x |θ)dx ,

can by computed in polynomial time with respect to the size of
p(x |θ).



Tractability

Used with the permission of Guy Van den Broeck.



Sum-Product networks

▶ in leaf node L(x)
p(x) = p(x |θL)

▶ in sum node S(x)

p(x) =
∑

N∈ch(S)
wNpN(xψ(N))

▶ in product node P(x)

p(x) =
∏

N∈ch(P)
pN(N(xψ(N))),

ψ(N) is a scoping function.



Special cases of SPNs

▶ Mixture model

p(x⃗) =
n∑

i=1
wipi(x),

n∑
i=1

wi = 1

▶ Product of marginals (naive bayes)

p(x⃗) =
n∏

i=1
pi(xi)

▶ Diagonal mixtures

p(x⃗) =
n∑

i=1
wi

n∏
j=1

pij(xj)



Are SPNs useful?



Are SPNs useful?



Scoping function

Scoping function ψ(N) is used to specify a subspace on which the
distribution of a given node is defined.

Example
Let, X = Rn, but the node L operates just on features (x1, x5, x6),
the scope function ψ(L) = (x1, x5, x6).



Tractability



Tractability of SPNs

Sum-Product networks are tractable
▶ if they are smooth and decomposable
▶ and for query f holds

f (x) =
∏

ψu∈∪{ψ(L)}
fu(ψu),

where
▶ ∪{ψ(L)} is the set of all possible scopes of leafnodes
▶ probability distribution of leafnodes are tractable



Smoothing and Decomposability

▶ Smootheness: All childs of sumnode S has to have the same
scope as S, i.e.

ψ(a1) = ψ(a2) ∀a1, a2 ∈ ch[S],

and weights wi ≥ 0 and
∑

i wi = 1.
▶ Decomposability: Scopes od childs of productnode P are

pairwise disjoint ⋂
a∈ch[P]

ψ(a) = ∅,

but complete ψ(P) =
⋃

a∈ch[P] ψ(a).
▶ The scope of rootnode R is over all features, ψ(R) = [P].



Recursive computation of integrals

For smooth and decomposable SPNs,
the integral I =

∫
f (x)p(x)dx can be computed recursively as

follows:

Iu =


∑

c∈ch(u) wu,c Ic , for u ∈ S,∏
c∈ch(u) Ic , for u ∈ P,∫
fu(ψu)pu(ψu)dψu, for u ∈ L,



Hierarchically-Structured trees
also called Hierarchical Multi-Instance Learning



Motivation

{

services: [

{

port: 22,

protocol: tcp

},

{

port: 4070,

protocol: tcp

},

{

port: 4071,

protocol: tcp

},

{

port: 5353,

protocol: udp

}],

device_id: 8bb8971c-5983-4baa-9753-f0ac21faf162,

ip: 192.168.1.80,

mac: ac:63:be:a5:50:43,

mdns_services: [_workstation._tcp.local., _ssh._tcp.local., _sftp-ssh._tcp.local.]

}



Motivation — semantic tree



Motivation — logic



Motivation — abstract syntax tree



Motivation — general graph

Errica, Federico, and Mathias Niepert. ”Tractable Probabilistic Graph
Representation Learning with Graph-Induced Sum-Product Networks.”, 2023.



Types of nodes

{

services: [

{

port: 22,

protocol: tcp

},

{

port: 4070,

protocol: tcp

},

{

port: 4071,

protocol: tcp

},

{

port: 5353,

protocol: udp

}],

device_id: 8bb8971c-5983-4baa-9753-f0ac21faf162,

ip: 192.168.1.80,

mac: ac:63:be:a5:50:43,

mdns_services: [_workstation._tcp.local., _ssh._tcp.local., _sftp-ssh._tcp.local.]

}

▶ Dictionaries
▶ Lists (sets)
▶ Leafs



Set node

▶ Set node computes a probability density over a hyper-space

X̄ = ∪∞
m=0 X × . . .× X︸ ︷︷ ︸

m

▶ probability density of a set node B is computed as

pB(x) = p(m)cmm!p(x1, . . . , xm)

where
▶ p(m) is a cardinality distribution
▶ p(x) is a probability distribution on X
▶ c is a constant for unit normalization



Why the factorial?

▶ We need probability distribution on sets {x1, . . . , xm}, but
p(x1, . . . , xm) is a probability distribution on Cartesian space.

▶ We define distribution on sets as

p({x1, . . . , xm}) =
∑

π∈perm
p(xπ(1), . . . , xπ(m))

▶ If p is exchengeable, it can be simplified to

p({x1, . . . , xm}) = m!psym(x1, . . . , xm)

▶ cluster model

p({x1, . . . , xm}) = m!
m∏

i=1
p(xi)



Construction of Sum-Product-Set network

(a) Schema
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Recursive computation of integrals

For smooth and decomposable SPSNs,
the integral

∫
f (x)p(x)dx can be computed recursively as follows:

Iu =



∑∞
k=0 p(k)

∏k
i=1 Ii , for u ∈ B,∑

c∈ch(u) wu,c Ic , for u ∈ S,∏
c∈ch(u) Ic , for u ∈ P,∫
fu(ψu)pu(ψu)dψu, for u ∈ L,



Experimental comparison

dataset MLP GRU LSTM HMIL SPSN
chess 0.41±0.03 0.41±0.05 0.34±0.04 0.39±0.02 0.39±0.03

citeseer 0.69±0.02 0.74±0.01 0.74±0.02 0.75±0.01 0.75±0.01
cora 0.75±0.03 0.86±0.01 0.84±0.01 0.85±0.00 0.86±0.01

genes 0.99±0.01 1.00±0.01 0.98±0.01 1.00±0.01 0.95±0.01
hepatitis 0.86±0.02 0.88±0.01 0.87±0.03 0.88±0.02 0.88±0.02

mutagenesis 0.84±0.02 0.83±0.02 0.82±0.04 0.83±0.00 0.84±0.02
uwcse 0.84±0.02 0.87±0.03 0.85±0.02 0.86±0.03 0.84±0.02
webkp 0.77±0.02 0.82±0.01 0.81±0.02 0.82±0.01 0.81±0.02

rank 3.62 1.62 3.88 1.62 2.38



Conclusion

▶ We have extended SPNs to a class of HS-tres (HMIL)
▶ It is the first generative model for this class of problems.
▶ Seems to deliver similar accuracy to non-tractable models.
▶ Is it useful?


