Tractable probabilistic models for hierarchical data

Tomáš Pevný

Czech Technical University in Prague

February 1, 2024

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Problem statement

We assume a set of samples $\{x_i | x_i \in \mathcal{X}\}_{i=1}^n$.

We want to fit a model $p(x|\theta)$ by maximizing likelihood

$$\arg\max_{\theta} \sum_{i} \log p(x_i|\theta)$$

such that

- $p(x|\theta)$ is a valid probability distribution
- $p(x|\theta)$ is tractable,

The model p(x) is tractable with respect to $f \in \mathcal{F}$ if the integral

$$\int_{\mathcal{X}} f(x) p(x|\theta) dx,$$

can by computed in polynomial time with respect to the size of $p(x|\theta)$.

Tractability

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Used with the permission of Guy Van den Broeck.

Sum-Product networks

in leaf node
$$L(x)$$

 $p(x) = p(x|\theta_L)$

• in sum node S(x)

$$p(x) = \sum_{\mathsf{N} \in \mathsf{ch}(\mathsf{S})} w_{\mathsf{N}} p_{\mathsf{N}}(x_{\psi(\mathsf{N})})$$

$$p(x) = \prod_{\mathsf{N} \in ch(\mathsf{P})} p_{\mathsf{N}}(\mathsf{N}(x_{\psi(\mathsf{N})})),$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $\psi(\mathsf{N})$ is a scoping function.

Special cases of SPNs

Mixture model

$$p(\vec{x}) = \sum_{i=1}^{n} w_i p_i(x), \quad \sum_{i=1}^{n} w_i = 1$$

Product of marginals (naive bayes)

$$p(\vec{x}) = \prod_{i=1}^{n} p_i(x_i)$$

Diagonal mixtures

$$p(\vec{x}) = \sum_{i=1}^{n} w_i \prod_{j=1}^{n} p_{ij}(x_j)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Are SPNs useful?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Are SPNs useful?

Scoping function $\psi(N)$ is used to specify a subspace on which the distribution of a given node is defined.

Example

Let, $\mathcal{X} = \mathbb{R}^n$, but the node L operates just on features (x_1, x_5, x_6) , the scope function $\psi(L) = (x_1, x_5, x_6)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tractability

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Tractability of SPNs

Sum-Product networks are tractable

- if they are smooth and decomposable
- and for query f holds

$$f(x) = \prod_{\psi_u \in \cup \{\psi(\mathsf{L})\}} f_u(\psi_u),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where

∪{ψ(L)} is the set of all possible scopes of leafnodes
 probability distribution of leafnodes are tractable

Smoothing and Decomposability

Smootheness: All childs of sumnode S has to have the same scope as S, i.e.

$$\psi(\mathsf{a}_1) = \psi(\mathsf{a}_2) \ \forall \mathsf{a}_1, \mathsf{a}_2 \in \mathsf{ch}[\mathsf{S}],$$

and weights $w_i \ge 0$ and $\sum_i w_i = 1$.

 Decomposability: Scopes od childs of productnode P are pairwise disjoint

 $\bigcap_{a\in \mathbf{ch}[\mathsf{P}]}\psi(a)=\emptyset,$

but complete $\psi(\mathsf{P}) = \bigcup_{a \in \mathsf{ch}[\mathsf{P}]} \psi(a)$.

• The scope of rootnode R is over all features, $\psi(R) = [P]$.

Recursive computation of integrals

For smooth and decomposable SPNs,

the integral $I = \int f(x)p(x)dx$ can be computed recursively as follows:

$$I_{u} = \begin{cases} \sum_{c \in ch(u)} w_{u,c}I_{c}, & \text{for } u \in S, \\ \prod_{c \in ch(u)} I_{c}, & \text{for } u \in P, \\ \int f_{u}(\psi_{u})p_{u}(\psi_{u})d\psi_{u}, & \text{for } u \in L, \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hierarchically-Structured trees also called Hierarchical Multi-Instance Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

```
ł
  services: [
  ſ
   port: 22,
   protocol: tcp
  },
  Ł
  port: 4070,
   protocol: tcp
  },
  Ł
   port: 4071,
   protocol: tcp
  },
  ſ
   port: 5353,
   protocol: udp
  }],
  device_id: 8bb8971c-5983-4baa-9753-f0ac21faf162,
  ip: 192.168.1.80,
  mac: ac:63:be:a5:50:43,
  mdns_services: [_workstation._tcp.local., _ssh._tcp.local., _sftp-ssh._tcp.local.]
}
```

Motivation — semantic tree

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Motivation — logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation — abstract syntax tree

Motivation — general graph

Errica, Federico, and Mathias Niepert. "Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks.", 2023.

Types of nodes

```
services: [
  £
   port: 22,
   protocol: tcp
 }.
   port: 4070,
   protocol: tcp
 },
   port: 4071,
   protocol: tcp
 },
 ł
   port: 5353.
   protocol: udp
 31,
 device_id: 8bb8971c-5983-4baa-9753-f0ac21faf162,
 ip: 192.168.1.80,
 mac: ac:63:be:a5:50:43,
 mdns_services: [_workstation._tcp.local., _ssh._tcp.local., _sftp-ssh._tcp.local.]
3
```

```
Dictionaries
```

Lists (sets)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Leafs

Set node

Set node computes a probability density over a hyper-space

$$\bar{\mathcal{X}} = \cup_{m=0}^{\infty} \underbrace{\mathcal{X} \times \ldots \times \mathcal{X}}_{m}$$

probability density of a set node B is computed as

$$p_{\mathsf{B}}(x) = p(m)c^m m! p(x_1, \ldots, x_m)$$

where

- \triangleright p(m) is a cardinality distribution
- p(x) is a probability distribution on \mathcal{X}
- c is a constant for unit normalization

Why the factorial?

- We need probability distribution on sets {x₁,..., x_m}, but p(x₁,..., x_m) is a probability distribution on Cartesian space.
- We define distribution on sets as

$$p(\{x_1,\ldots,x_m\}) = \sum_{\pi \in \mathsf{perm}} p(x_{\pi(1)},\ldots,x_{\pi(m)})$$

If p is exchangeable, it can be simplified to

$$p(\{x_1,\ldots,x_m\})=m!p^{\mathsf{sym}}(x_1,\ldots,x_m)$$

cluster model

$$p(\{x_1,\ldots,x_m\})=m!\prod_{i=1}^m p(x_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Construction of Sum-Product-Set network

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Recursive computation of integrals

For smooth and decomposable SPSNs,

the integral $\int f(x)p(x)dx$ can be computed recursively as follows:

$$I_{u} = \begin{cases} \sum_{k=0}^{\infty} p(k) \prod_{i=1}^{k} I_{i}, & \text{for } u \in B, \\ \sum_{c \in ch(u)} w_{u,c} I_{c}, & \text{for } u \in S, \\ \prod_{c \in ch(u)} I_{c}, & \text{for } u \in P, \\ \int f_{u}(\psi_{u}) p_{u}(\psi_{u}) d\psi_{u}, & \text{for } u \in L, \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Experimental comparison

dataset	MLP	GRU	LSTM	HMIL	SPSN
chess	0.41±0.03	$0.41 {\pm} 0.05$	0.34 ± 0.04	0.39 ± 0.02	0.39±0.03
citeseer	0.69 ± 0.02	0.74 ± 0.01	0.74 ± 0.02	$0.75 {\pm} 0.01$	$0.75 {\pm} 0.01$
cora	0.75 ± 0.03	$0.86 {\pm} 0.01$	$0.84 {\pm} 0.01$	0.85 ± 0.00	$0.86 {\pm} 0.01$
genes	0.99 ± 0.01	$1.00 {\pm} 0.01$	$0.98 {\pm} 0.01$	$1.00 {\pm} 0.01$	0.95 ± 0.01
hepatitis	0.86 ± 0.02	$0.88 {\pm} 0.01$	0.87 ± 0.03	$0.88 {\pm} 0.02$	$0.88 {\pm} 0.02$
mutagenesis	0.84±0.02	0.83 ± 0.02	0.82 ± 0.04	0.83 ± 0.00	0.84±0.02
uwcse	0.84 ± 0.02	0.87 ± 0.03	0.85 ± 0.02	0.86 ± 0.03	0.84 ± 0.02
webkp	0.77 ± 0.02	$0.82 {\pm} 0.01$	$0.81 {\pm} 0.02$	$0.82 {\pm} 0.01$	0.81 ± 0.02
rank	3.62	1.62	3.88	1.62	2.38

Conclusion

- We have extended SPNs to a class of HS-tres (HMIL)
- It is the first generative model for this class of problems.
- Seems to deliver similar accuracy to non-tractable models.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Is it useful?