
Cartesian Genetic Programming
for

Evolution and Approximation
of

Digital Circuits

Lukáš Sekanina
Faculty of Information Technology

Brno University of Technology

sekanina@fit.vutbr.cz

Prague, MFF UK

November 5, 2015

Why to Evolve Designs?

New designs

“Evolutionary algorithms in practice can produce

designs that are beyond the scope of conventional

methods and are, in some sense, better.”
[Thompson et al: IEEE Trans. on Evol. Comp, 1999]

Adaptive systems

“The challenge of conventional design is replaced

with that of designing an evolutionary process

that automatically performs the design in our

place. This may be harder than doing the design

directly, but makes autonomy possible.”
[Adrian Stoica, NASA JPL, 2004]

2

3

Human-Competitive Results Competition at GECCO

http://www.genetic-programming.org/combined.php

J. R. Koza

4

Humies at GECCO since 2004

J. Koza: We say that an automatically created result is “human-competitive” if it
satisfies one or more of the eight criteria below.

• (A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

• (B) The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.

• (C) The result is equal to or better than a result that was placed into a database or
archive of results maintained by an internationally recognized panel of scientific experts.

• (D) The result is publishable in its own right as a new scientific result independent of the
fact that the result was mechanically created.

• (E) The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly better
human-created solutions.

• (F) The result is equal to or better than a result that was considered an achievement in
its field at the time it was first discovered.

• (G) The result solves a problem of indisputable difficulty in its field.

• (H) The result holds its own or wins a regulated competition involving human contestants
(in the form of either live human players or human-written computer programs).

Winners of Humies 2004 - 2015

5

Year Title Institution

2004 An Evolved Antenna for Deployment on NASA's ST 5 Mission NASA AMES

Automatic Quantum Computer Programming: A GP Approach Hampshire Coll., US

2005 Two-dimensional photonic crystals designed by evolutionary algorithms Cornell U., US

Shaped-pulse optimization of coherent soft-x-rays Colorado S. Univ., US

2006 Catalogue of Variable Freq. and Single-Resistance-Controlled Oscillators MIT, US

2007 Evol. Design of Single-Mode Microstructured Polymer Optical Fibers UCL, UK

2008 Genetic Programming for Finite Algebras Hampshire Coll., US

2009 A Genetic Programming Approach to Automated Software Repair U. of New Mexico, US

2010 Evol. design of the energy function for protein structure prediction U. of Nottingham, UK

2011 GA-FreeCell: Evolving Solvers for the Game of FreeCell Ben-Gurion U., IL

2012 Evolutionary Game Design ICL, UK

2013 Evolutionary Design of FreeCell Solvers Ben-Gurion U., IL

Search for a grand tour of the Jupiter Galilean moons ESA

2014 Genetic Algorithms for Evolving Computer Chess Programs Bar-Ilan University, IL

2015 Evolutionary Approach to Approximate Digital Circuits Design Brno U. of Tech., CZ

6

Outline

• Cartesian Genetic Programming (CGP)

• Formal methods in the fitness function

 SAT-based approach

 BDD-based approach

• Evolutionary design of image filters

• Approximate computing using CGP

• Conclusions

7

Evolutionary design

evolutionary

engine

(EA)

generator of candidate solutions

genotyp config. file

d
e
c
o

d
e

simulator

specification

fitness value

fitness function

I/O

• generate stimuli for candidate solution

• obtain responses from candidate solution

• compare the responses with target values

• calculate the fitness value

8

• Cartesian Genetic Programming (CGP) is a form
of Genetic Programming (GP)
 GP: candidate program ~ syntactic tree (J. Koza)
 CGP: candidate program ~ directed acyclic graph

• Features of CGP
 genetic encoding is compact and simple
 mutation-based search
 easy to implement

• Implementations
 standard CGP, modular CGP, self-modifying CGP,

multichromosome CGP, multiobjective CGP

• CGP website
 http://www.cartesiangp.co.uk/

Cartesian Genetic Programming [Miller 1999]

CGP: Standard form

• ni primary inputs

• no primary outputs

• nc columns

• nr rows

ni

ni+1

ni+nr-1

ni+nr

ni+nr+1

ni+2nr-1

ni+(nc-1)nr

• na inputs of each node

•  function set

• L-back parameter

ni+ncnr-1

nr

nc

L = nc-1

L = nc

0

1

ni-1

ni
no

Nodes in the same
column are not allowed
to be connected to
each other.

No feedback!

a

b
g(a,b)

9

10

CGP: Representation for logic networks

Genotype:

na+1 integers per node; no integers for outputs;

Constant size: ncnr(na + 1) + no integers

Phenotype:

Variable size; unused nodes are ignored.

• CGP parameters
• nr=3 (#rows)
• nc = 3 (#columns)
• ni = 3 (#inputs)
• no = 2 (#outputs)
• na = 2 (max. arity)
• L = 3 (level-back

parameter)
• = {NAND(0), NOR(1),

XOR(2), AND(3), OR(4),
NOT (5)}

11

CGP: Fitness function for logic synthesis

target table:

Specification

(1-bit adder),

Typical fitness function (circuit functionality):

𝑓 = |𝑦𝑖

𝐾

𝑖=1

− 𝑤𝑖|

Circuit response

Desired response

The number of test vectors

K = 2inputs for combinational circuits. Not scalable!!!

Additional objectives - minimize:

• the area (the number of gates)

• delay

• power consumption etc.

12

CGP: Mutation-based search

mutation

• Mutation: Randomly select h integers and replace them by randomly
generated (but legal) values:

(for full adder)

13

CGP: Search algorithm (1 + )

14

CGP: The role of neutrality

Evolutionary design of the 3bx3b multiplier (cf Vassilev, Miller: ICES 2000)
Normalized fitness for 100 independent runs (10M generations).
ON: A new parent replaces the former parent if its fitness is higher or equal.
OFF: A new parent replaces the former parent only if its fitness is higher.

15

Evolutionary design at FIT BUT

• Image filters

• Logic circuits

 complex general logic

 bent functions

 application protocol
classifiers

 polymorphic circuits

• Transistor-level circuits

• Benchmark circuits for
diagnostics CAD tools

• Image compression

• Microprogram-controlled HW

• Protocols for WSN

• Approximate circuits and SW

• Accelerators for EA

 FPGA, GPU, many core chips
(Xeon Phi), cluster,
supercomputer

• Advanced GP

 development

 Co-evolution

 ALPS

 multi-objective

 parallel

• Other applications

 GA in calibration of microscopic
traffic models

 Multi-objective GA pro robust
prediction of traffic data

16

CGP for optimization of complex circuits

• SAT solver is used to decide whether candidate circuit Ci

and reference circuit C1 are functionally equivalent.

• If so, then fitness(Ci) = the number of gates in Ci;

• Otherwise: discard Ci.

Conventional

synthesis

(ABC, SIS…)

CGP

Optimized

circuit C1

Even more

optimized C1

(= a seed for the

initial population;

reference circuit)

[Vašíček, Sekanina: Genetic Programming and Evolvable Machines 12(3), 2011]

Original

circuit C

17

SAT solver in the fitness function (1)

?


If C1 and C2 are not functionally equivalent then there is at least one

assignment to the inputs for which the output of G is 1.

G:

C1: C2:

a b xor

0 0 0

0 1 1

1 0 1

1 1 0
a

b

18

SAT solver in the fitness function (2)

• Circuit G is transformed to conjunctive normal form (CNF)
using the Tseitin transform.

• The CNF representation captures the valid assignments
between the gate inputs and outputs.

 Consider a gate y = OP(a, b)

 Hence, a CNF formula (y, a, b) = 1 if the predicate y = OP(a, b)
holds true.

 Example: y = not (x)

x y 

0 0 0

0 1 1

1 0 1

1 1 0

CNF: (~x  y) (x  ~y)

• SAT solving can be combined with circuit simulation and
optimized using various methods.

19

SAT solver in the fitness function (3)

7

6

1

2

3

4

5

8
9

10

11

12

13

20

SAT solver in the fitness function (3)

7

6

1

2

3

4

5

8
9

10

11

12

13

SAT solver

variables: 13, clauses: 30, time elapsed: 0.03ms

result: SATISFIABLE / NONEQUIVALENT

model / counter example: 0011111101011

21

Experiment 1: Minimization of the number of gates

CGP + SAT solver:

ES(1+1), 1 mut/chrom, seed: SIS, Gate set: {AND, OR, NOT, NAND, NOR, XOR}, 100 runs

Average area improvement: 25%

Delay increased: +3 logic levels (but not optimized!)

ABC, SIS – conventional open academic synthesis tools

C1, C2, C3 – commercial synthesis tools

[Vašíček, Sekanina: DATE 2011]

22

Experiment 1: Convergence curves

• Summary
 More time  better results

 Current circuit synthesis and optimization tools provide far from
optimum circuits!

23

Exp. 2: More complex circuits

100 combinational circuits (15 inputs) - IWLS2005, MCNC, QUIP

benchmarks

Heavily optimized by ABC

1: alcom (NG = 106 gates; NPI = 15 inputs; NPO = 38 outputs)

100: ac97ctrl (NG = 16,158; NPI = 2,176; NPO = 2,136)

- the number of gates (optimized by ABC)

24

Exp. 2: More complex circuits

CGP + SAT solver + circuit simulation

Y-axis: Gate reduction w.r.t. ABC after 15 minutes, 34% on average

▲ Gate reduction w.r.t. ABC after 24 hours

[Vašíček Z.: EuroGP 2015]

BDD in the fitness function [Vašíček, Sekanina: ICES 2014]

Objective

 To evolve complex circuits from scratch (to avoid biasing by
conventional solutions)

 To minimize the number of gates

25

The method: CGP

• The specification is given as a Binary Decision Diagram
(BDD).

• Every candidate circuit is converted from CGP
representation to BDD and its functionality is compared
against the specification (BDD).

• The operations over BDDs are implemented using Buddy.

 Standard CGP will be compared with CGP-BDD.

Binary Decision Diagrams (BDD)

26

1 edge

0 edge

a b c f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Truth table

f = ac + bc

Decision tree

1 0 0 0 1 0 1 0

a

b

c

b

c c c

f

1 0

a

b

c

f= (a+b)c

Reduced Ordered
BDD (ROBDD)

“Apply” operation

• Is a basic technique for building ROBDD from a Boolean formula

27

A B op A op B 

F9 = F6 OR F7

OR 

Arguments:

• A, B: Boolean functions, represented as ROBDDs

• op: Boolean operation (e.g., AND, OR, XOR)

Result:

• ROBDD representing composite function A op B

F6 = b OR c F7 = c AND d

From CGP representation to ROBDD

1. Inform a BDD library that ni variables are required. Specify ordering.

2. Visit each CGP node encoded as (i1, i2, f) and perform Apply operation
using Boolean operation f on top of the variables i1 and i2

28



Ordering: d > c > b > a

Example:
x y

How to calculate the fitness value – 1/2

1. For a candidate circuit, apply the same approach as for a reference

2. Combine all the corresponding outputs with XOR operation

29

mutation

How to calculate the fitness value – 2/2

3. SatCount operation is applied on every output yi (linear time
complexity)

4. The sum of the obtained values represents the Hamming distance
between a candidate solution and a chosen reference implementation.

30

1. SatCount(Fy1) = 13

2. SatCount(Fy2) = 0

3. Fitness value = 13 + 0 = 13

The assignments evaluating Fy1 to 1:

a b c d # combinations

- - - 0 8

- - 0 1 4

1 1 1 1 1

The zero fitness value means that a fully working

solution was discovered.

Benchmark Circuits

• Pre-optimized by ABC

• Computational (simulation) Effort: CE = gates * 2inp (64-bit CPU)

• Sorted according to CE

31

CGP parameters

• nc = # of gates from ABC

• nr = 1

• L-back = max.

• ES (1+4)

• 5 mutations/chromosome

• Gate set: AND, OR, NOT, NAND, NOR, XOR, NXOR, BUF

• 3-hours/run

CGP: a well optimized implementation of the standard CGP

CGP-BDD: CGP utilizing the Buddy BDD library

32

Evolutionary design from scratch

• CGP-BDD gives the speedup 1 – 2 orders of magnitude

• The success rate calculated from 100 independent runs.

• Is the BDD size the main indicator of difficulty?

33

Parameters of evolved circuits

• If fbst < 100% (functionality) then gbst is the average number of gates in

the last 100 generations across all the runs.

• Improv. is the improvement against ABC.

34

Convergence curves – tcon (25 runs)

35

• The average number of gates in
all phenotypes w.r.t. ABC.

36

Evolutionary design of image filters

Can EA design an image filter which exhibits better filtering properties
and lower implementation cost w.r.t. conventional solutions?
Target domain: filters suppressing shot noise, Gaussian noise, burst noise, edge detectors,
…

36

37

Image filter in CGP

9 x 8bits 1 x 8bits

• Array of programmable.
elements (PE).

• No feedbacks.

• All I/O and connections
on 8 bits.

• PE over 8 bits:
• Minimum

• Maximum

• Average

• Constants

• logic operators

• shift

Sekanina L.: EvoAISP 2002

38

   









1

0

1

0

,,
1 R

r

C

c

crKcrI
RC

MAE

GOLDEN IMAGE

FILTERED IMAGE

- |ABS| +
REG

I: golden

image

K: filtered

image

R: rows

C: columns

Fitness function

39

a) Image corrupted by 5% salt-and-pepper noise
 PSNR: 18.43 dB (peak signal to noise ratio)

b) Original image

c) Median filter (kernel 3x3)

 PSNR: 27.92 dB

 268 FPGA slices; 305 MHz

d) Evolved filter (kernel 3x3)

 PSNR: 37.50 dB

 200 FPGA slices; 308 MHz a)

b) c) d)

Example of evolved filter behavior

40

MF – Median Filter; AMF – Adaptive Median Filter

The single filter and 3-bank are evolved filters (Czech patent #304181).

Best SW - Y. Dong, S. Xu: A new directional weighted median filter for removal of random-valued
impulse noise. Signal Processing Letters. vol. 14, no. 3, p. 193–196, 2007

Mean PSNR for 25 test images

Comparison of various filters

41

Approximate computing

• High performance & low
power computing needed:
 “Big data” processing

 Mobile electronics with low
power budget

• Many applications are
error-resilient
 the error can be traded for

energy savings or
performance.

• Approximations are
currently introduced for SW
as well as HW
components.

Error as a design metric!

0

50

100

150

200

250

300

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Search for "approximate computing" in
articles by Google Scholar (Nov 2015)

42

Many applications are inherently error resilient

Courtesy of K. Roy

43

The median function

filtered image
(9-input median filter)

corrupted image
(10% pixels, impulse noise)

original

Functional-level CGP: Approximate median circuits

44

Power consumption and other parameters were estimated during evolution and
then validated using an external tool (SIS).

The error measured using 104 test vectors for w = 9 and 105 test vectors for w = 25.

Components (MIN, MAX)

e
rr

o
r

P
o
w

e
r

co
n
su

m
p
ti
o
n
 r

e
d
u
ct

io
n

Components (MIN, MAX)

9-input median

(8 bit)

25-input median

(8 bit)

18 components 6 components 31 components
Z. Vasicek and L. Sekanina. Evolutionary approach to approximate digital circuits design. IEEE trans. on Evol. Comp. 19(3), 2015

Approximate 9-median as SW for microcontroller

45

fully-working median

4.8% error prob.,
max. error dist. 1
21% power reduction

34.9% error prob.,
max. error dist. 2

52% power reduction

#define PIX_SORT(a,b) {
 if ((a)>(b))
 PIX_SWAP((a),(b));
}

ops = operations in the source code.

V. Mrazek, Z. Vasicek and L. Sekanina. GECCO GI Workshop, 2015

46

Circuit approximation: CGP & BDD

error/delay only

single run

error/area only

 Clmb (bus interface): 46 inputs, 33 outputs
 Original clmb: 641 gates, 19 logic levels, |BDD| = 6966, |BDDopt| = 627 (SIFT in 2.3 s)
 Optimized by CGP (no error allowed):

 Best: 410 gates, 12 logic levels -- in 29 minutes (2.9 x 106 generations)
 Median: 442 gates, 13 logic levels

global
Pareto
front

Conclusions

• Evolutionary design has provided innovative designs in
many areas of engineering and technology.

 CGP vs GP vs LGP vs GE vs …

• Recent applications

 Approximate computing

 Genetic improvement

• Open problems

 Scalability

• Representation

• Fitness function

 Non-determinism

 Trust

47

Thank you for your attention!

Lukáš Sekanina
Faculty of Information Technology

Brno University of Technology

sekanina@fit.vutbr.cz

