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Why study CAUSALITY?

… and understanding how things work (causation) is the 
ultimate goal of science

1. Which variables are “important” in my scenario?
≈ Feature selection

2. How does changing one variable affect the system?
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Correlational approaches fail at 
discovering “important” variables

Linear regression 

!𝑦! = w" +w# 𝑥# +⋯+w$𝑥$

Trained by minimizing the mean squared error

𝒘 = argmin
𝒘

1
𝑁
1
!

𝑦! − !𝑦! &
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Correlational approaches fail at 
discovering “important” variables

Linear regression 

!𝑦! = w" +w# 𝑥# +⋯+w$𝑥$

LASSO focuses on 𝒘 such that 

𝒘 = argmin
𝒘

1
𝑁
1
!

𝑦! − !𝑦! & − 𝜆1
!

||𝑤!||
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Correlational approaches fail at 
discovering “important” variables

Solution obtained minimizing MSE

!𝑦! = w! +w" 𝑥" +w# 𝑥# +⋯+w$%" 𝑥$%" +w$𝑥$

Solution obtained minimizing LASSO

!𝑦! = w! +w" 𝑥" +w# 𝑥# +⋯+w$%" 𝑥$%" +w$𝑥$
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Correlational approaches fail at 
discovering “important” variables

Gillis, T.B. and Spiess, J.L., 2019. Big data and discrimination. The University of Chicago Law Review, 86(2), pp.459-488
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Why study CAUSALITY?

… and understanding how things work (causation) is the 
ultimate goal of science

1. Which variables are “important” in my scenario?

2. How does changing one variable affect the system?
≈ Interpretation
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Correlational approaches 
fail at discovering effects

A C

Y

B D

S

(𝐴 ⋀ 𝐵 ⋀ C ⋀ 𝐷) ⨁𝐵(0.1)

(𝐴 ⋀ 𝐵 ⋀ C ⋀ 𝐷) ⨁𝐵(0.1)
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Correlational approaches 
fail at discovering effects

Coefficients of           A                    B                        C                     D                        S

A C

Y

B D

S

(𝐴! ⋀ 𝐵!⋀ 𝐶! ⋀ 𝐷!) ⨁𝐵(0.1)

(𝐴! ⋀ 𝐵! ⋀ 𝐶! ⋀ 𝐷!) ⨁𝐵(0.1)
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Correlational approaches 
fail at discovering effects

A C

Y

B D

S
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Why study CAUSALITY?

…and understanding how things work (causation) is the 
ultimate goal of science

1. Which variables are “important” in my scenario?

2. How does changing one variable affect the system?



Causal Bayesian Networks 
are convient ways to model 
causal relationships among
variables

𝐵𝑁 =< 𝐺, 𝑝 >
where

𝑝 𝑋! = 𝑓(𝑝𝑎 𝑋! , 𝜖)

Interventional probability
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Causal framework (à la Pearl)



(Some) main objectives of causal techniques:

• Which variables are “important” in my scenario? 
Structure discovery: How are variables linked?

• How does changing one variable affect the system?
Effect estimation: How changing affects ?

24

Causal inference objectives
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My focus

Develop algorithms to:

• (Structure discovery) Discover causally related 
variables to a target

• (Effect estimation) Evaluate effect of causal rules

From observational data and providing guarantees 
on the results
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Observational vs. Interventional

Causal BNs are built using interventional data 
(e.g. setting variable 𝑋! = 𝑥!)

Observational data is much more common

Th. [informal] If spurious dependencies are 
removed, observational and interventional 
probability distributions are equivalent 
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My focus

Develop algorithms to:

• (Structure discovery) Discover causally related 
variables to a target

• (Effect estimation) Evaluate effect of causal rules

From observational data and providing guarantees
on the results
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Providing guarantees

Statistical guarantees are NOT just evaluation of 
perfomances

Guarantees are fundamental to gain users trust

Typically, algorithms with guarantees focus on 
False Discoveries (or False Positives)
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My focus

Develop algorithms to:

• (Structure discovery) Discover causally 
related variables to a target

Simionato Dario, and Fabio Vandin. "Bounding the Family-Wise Error
Rate in Local Causal Discovery using Rademacher Averages."
Accepted at ECML PKDD 2022 – Best paper award



Task: Given a dataset of 
observations of variables 
𝑽, find those causally
related to 𝑇 with 
guarantees on the result 
(e.g. no false positives)

Useful in: Biology, 
medicine, neuroscience 
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Set of variables  𝑽 Target 𝑇

Problem Definition
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Causal Bayesian Networks represent
cause-consequence relations between
variables

Informally, if is a cause of ,

then fixing all variables values and changing

the value of leads to a variation on

the values of

Problem Definition

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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Problem Definition

Local causal discovery focuses on:

• Parent – Children set of 𝑇 𝑷𝑪(𝑻)
Parents(𝑇) + Children(𝑇)

Contains direct causes and consequences 
of 𝑇

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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Problem Definition

Local causal discovery focuses on:

• Parent – Children set of 𝑇 𝑷𝑪(𝑻)
Parents(𝑇) + Children(𝑇)

Contains direct causes and consequences 
of 𝑇

• Markov Boundary of 𝑇 𝑴𝑩(𝑻)
𝑃𝐶(𝑇) + Spouses(𝑇)

Optimal set for the prediction of 𝑇

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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Problem Definition

Given a dataset and a target 𝑇, our task is to discover:

• Parent – Children set of 𝑇 𝑷𝑪(𝑻)

• (or) Markov Boundary of 𝑇 𝑴𝑩(𝑻)

Several approaches are proposed in the literature 
[Pena et al. ‘07], [Aliferis et al. ‘10], [Aliferis et al. ‘03]
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Is           independent 
from          ? 

Is           independent 
from           given          ? 

Is           independent 
from           given          ? 

...

Statistic
=
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=

3.459
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Statistical Testing and Guarantees



When testing 𝑁 hypotheses

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ~ 𝐵𝑖𝑛(𝑁, ẟ)

𝑃 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 1 − (1 − ẟ)! ≥ ẟ

In our problem  𝑁 = |𝑽| 𝑽 + 1 2 𝑽 "# is the number of 
possible conditional independence tests.

43

Statistical Testing and Guarantees



Approaches with guarantees typically 
focus on bounding

False Discovery Rate 

𝐹𝐷𝑅 = 𝐸
𝑁𝑢𝑚𝑏𝑒𝑟 𝑓𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑒𝑠

Family-Wise Error Rate 

𝐹𝑊𝐸𝑅 = 𝑃(𝑅𝑒𝑡𝑢𝑟𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
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Correct solution

Typical solution (controlling the 𝐹𝐷𝑅)

Typical solution (controlling the 𝐹𝑊𝐸𝑅)

Statistical Testing and Guarantees



Approaches with guarantees typically 
focus on bounding

False Discovery Rate 

𝐹𝐷𝑅 = 𝐸
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Correct solution

Typical solution (controlling the 𝐹𝐷𝑅)

Typical solution (controlling the 𝐹𝑊𝐸𝑅)

Statistical Testing and Guarantees

Our focus



Assume perfect detection of dependencies and 
independencies
[Pena et al. ‘07], [Aliferis et al. ‘10], [Aliferis et al. ‘03]

- Unfeasible and untestable assumptions

Bound the false discovery rate
[Tsamardinos and Brown ‘08]

- May still return false positives

46

Previous Works



• Proved that SoA algorithms cannot control the 𝑭𝑾𝑬𝑹
by correcting for multiple hypothesis testing

• Developed RAveL-PC and RAveL-MB: the first 
algorithms for local causal discovery with guarantees 
on the 𝑭𝑾𝑬𝑹

• Implemented bounds on 𝐹𝑊𝐸𝑅 exploiting classical 
corrections and data-dependent bounds based on 
Rademacher averages

• Tested RAveL-PC and RAveL-MB both on synthetic and 
real-world datasets
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Our Contributions
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SoA Algorithm Analysis

Th. [informal] State of the art algorithms (GetPC, PCMB 
and IAMB) control the 𝐹𝑊𝐸𝑅 if they correct for multiple 
hypothesis testing and some strong assumptions 
(infinite power) are met.

We showed some examples in which removing such 
assumptions may lead to returning false positives in 
output



Our algorithms:

• Formulate the local discovery task using only 
independence tests (and not dependence tests)

• Apply suitable corrections (Rademacher, Bonferroni) 
to control for the 𝐹𝑊𝐸𝑅

49

RAveL Pipeline



Our algorithms:

• Formulate the local discovery task using only 
independence tests (and not dependence tests)

• Apply suitable corrections (Rademacher, Bonferroni) 
to control for the 𝐹𝑊𝐸𝑅

Th. [informal] RAveL-PC and RAveL-MB effectively 
control the 𝐹𝑊𝐸𝑅 below a given threshold ẟ.

50

RAveL Pipeline



51

RAveL-MB at a Glance

Task: Discover a subset of 𝑴𝑩(𝑻) without
returning any false positive

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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RAveL-MB at a Glance

𝑷𝒂𝒓𝒆𝒏𝒕𝒔(𝑻)

𝑴𝑩(𝑻)}
Task: Discover a subset of 𝑴𝑩(𝑻) without
returning any false positive

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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RAveL-MB at a Glance

𝑷𝒂𝒓𝒆𝒏𝒕𝒔(𝑻)

𝑪𝒉𝒊𝒍𝒅𝒓𝒆𝒏(𝑻) 𝑴𝑩(𝑻)}
Task: Discover a subset of 𝑴𝑩(𝑻) without
returning any false positive

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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RAveL-MB at a Glance

Task: Discover a subset of 𝑴𝑩(𝑻) without
returning any false positive

𝑷𝒂𝒓𝒆𝒏𝒕𝒔(𝑻)

𝑪𝒉𝒊𝒍𝒅𝒓𝒆𝒏(𝑻)

𝑺𝒑𝒐𝒖𝒔𝒆𝒔(𝑻)

𝑴𝑩(𝑻)} 𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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RAveL-MB at a Glance

1- Discover a subset 𝑺 of elements in 𝑃𝐶(𝑇)

𝑺

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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𝑺
Candidate 
spouses

RAveL-MB at a Glance

1- Discover a subset 𝑺 of elements in 𝑃𝐶(𝑇)
2- For each element 𝑋 in 𝑺 find a candidate
set of spouses in 𝑃𝐶(𝑋)

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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RAveL-MB at a Glance

1- Discover a subset 𝑺 of elements in 𝑃𝐶(𝑇)
2- For each element 𝑋 in 𝑺 find a candidate
set of spouses in 𝑃𝐶(𝑋)

𝑺
Candidate 
spouses

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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1- Discover a subset 𝑺 of elements in 𝑃𝐶(𝑇)
2- For each element 𝑋 in 𝑺 find a candidate
set of spouses in 𝑃𝐶(𝑋)
3- For each candidate spouse 𝑌 with children
𝑋, test the spouse condition

Previous approaches:

Our formulation (equivalent):

Independence testDependence test

RAveL-MB at a Glance

𝑺
Actual
spouses

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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1- Discover a subset 𝑺 of elements in 𝑃𝐶(𝑇)
2- For each element 𝑋 in 𝑺 find a candidate
set of spouses in 𝑃𝐶(𝑋)
3- For each candidate spouse 𝑌 with children
𝑋, test the spouse condition

Previous approaches:

Our formulation (equivalent):

Independence testDependence test

RAveL-MB at a Glance

𝑺
Actual
spouses

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇



• Bonferroni correction on the threshold ẟ
Classical correction for multiple hypotheses 
testing uses a modified threshold ẟ/𝑁 on each 
test

May be too strict if 𝑁 is big (and in our case N is 
exponential on |𝑽|)

• Rademacher averages to bound each test statistic
Provide data-dependent bounds

60

Multiple Hypothesis Testing Corrections



61

Rademacher Averages - Idea

Given a family of functions        and a dataset      , 
Rademacher averages upper bound with high 
probability the Supremum Deviation 

Empirical sample mean

Expectation

Rademacher 
estimate

Dataset
size
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Rademacher Averages - Idea

Given a family of functions        and a dataset      , 
Rademacher averages upper bound with high 
probability the Supremum Deviation 

Empirical sample mean

Expectation

Rademacher 
estimate

Dataset
size

They can lower bound simultaneously each 
independence test statistic for providing guarantees 
on the 𝐹𝑊𝐸𝑅
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Rademacher Averages - Idea

Given two normalized vectors of observations x,	y

𝑃𝑒𝑎𝑟𝑠𝑜𝑛&𝑠 𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑟',) =
∑*+!,%" 𝑥*𝑦*
(𝑚 − 1)
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Rademacher Averages - Idea

Given two normalized vectors of observations x,	y

𝑃𝑒𝑎𝑟𝑠𝑜𝑛&𝑠 𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑟',) =
∑*+!,%" 𝑥*𝑦*
(𝑚 − 1)

By defining
𝑟',) 𝑠* =

𝑚
𝑚 − 1

𝑥*𝑦*

We get
𝑟',) = O𝔼-[𝑟',) 𝑠* ]
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Rademacher Averages - Idea

Given two normalized vectors of observations x,	y

𝑃𝑒𝑎𝑟𝑠𝑜𝑛&𝑠 𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑟',) =
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Rademacher Averages - Idea

Given two normalized vectors of observations x,	y

𝑃𝑒𝑎𝑟𝑠𝑜𝑛&𝑠 𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑟',) =
∑*+!,%" 𝑥*𝑦*
(𝑚 − 1)

By defining
∋ 𝑟',) 𝑠* =

𝑚
𝑚 − 1

𝑥*𝑦*

We get
𝑟',) = O𝔼-[𝑟',) 𝑠* ]

The same approach works with other test statistics
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Experimental Evaluation

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

A5

B5

C5

• On each run, test the SoA and RAveL algorithms on every 
variable

• Analyse results of each iteration:
• No False Positives only if all the outputs (one per variable) of the 

run do not contain false positives
• Count mean percentage of false negatives



RAveL-PC and RAveL-MB effectively control the 𝐹𝑊𝐸𝑅
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Experimental Evaluation

ẟ= 0.05



Test statistic choice heavily affects Rademacher based 
corrections

Tests with increasing number of variables
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Experimental Evaluation



Tested RAveL-PC and RAveL-MB on Boston housing 
dataset with ẟ = 0,01.
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Experimental Evaluation

Nearby 
employ. 
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Nearby 
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Avg. 
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%
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tax rate

Median 
house 
price



Tested RAveL-PC and RAveL-MB on Boston housing 
dataset with ẟ = 0,01.
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Experimental Evaluation
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My focus

Develop algorithms to:

• (Structure discovery) Discover causally related 
variables to a target

• (Effect estimation) Evaluate effect of causal rules

From observational data and providing guarantees
on the results
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Very serious research question
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My focus

Develop algorithms to:

• (Structure discovery) Discover causally related 
variables to a target

• (Effect estimation) Evaluate effect of causal rules
Submitted paper at ECCB 2023 and work in progress in collaboration with:

Antonio Collesei, PhD s. (IOV)
Paola Donolato, MS
Federica Miglietta, MD and PhD s. (IOV)
Fabio Vandin, Full Professor
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Causal Bayesian Networks represent cause-
consequence relations between variables
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Causal Bayesian Networks represent cause-
consequence relations between variables

Problem Setup

Positive impact
Negative impact
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Problem Definition

= TRUE  AND = FALSE   THEN = TRUE GIVEN𝜎:

Actionable variables Target Counfounder(s)
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Problem Definition

= TRUE  AND = FALSE   THEN = TRUE GIVEN𝜎:

Actionable variables Target Counfounder(s)

𝑒 𝜎 = 𝑝 = 𝑇𝑅𝑈𝐸 𝜎, ) − 𝑝 = 𝑇𝑅𝑈𝐸 B𝜎, )



Task: Given a dataset of observations of variables 𝑽,     
find the top-𝑘 rules 𝜎#∗, … , 𝜎(∗ with the highest causal 
effect on 𝑇 with guarantees on the result (e.g. no false 
positives)
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Problem Definition

= TRUE  AND = FALSE   THEN = TRUE GIVEN𝜎:

𝑒 𝜎 = 𝑝 = 𝑇𝑅𝑈𝐸 𝜎, ) − 𝑝 = 𝑇𝑅𝑈𝐸 B𝜎, )

Actionable variables Target Counfounder(s)



We have to deal with confounder variables
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Example

Positive impact
Negative impact
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Example

Positive impact
Negative impact

0.5 0.7 1.5
1.4 1.8 2.0
2.7 3.0 3.7
2.3 2.9 3.2
1.8 1.9 2.3
1.6 1.9 2.2
0.6 0.9 1.4
0.3 0.5 1.0
1.1 1.3 1.4



We have to deal with confounder variables
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Example

Positive impact
Negative impact

0.5 0.7 1.5
1.4 1.8 2.0
2.7 3.0 3.7
2.3 2.9 3.2
1.8 1.9 2.3
1.6 1.9 2.2
0.6 0.9 1.4
0.3 0.5 1.0
1.1 1.3 1.4

Our focus

and
are correlated
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Example

Positive impact
Negative impact

0.5 0.7 1.5
1.4 1.8 2.0
2.7 3.0 3.7
2.3 2.9 3.2
1.8 1.9 2.3
1.6 1.9 2.2
0.6 0.9 1.4
0.3 0.5 1.0
1.1 1.3 1.4

Our focus

and
are correlated



We have to deal with confounder variables
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Example

Positive impact
Negative impact

0.5 0.7 1.5
1.4 1.8 2.0
2.7 3.0 3.7
2.3 2.9 3.2
1.8 1.9 2.3
1.6 1.9 2.2
0.6 0.9 1.4
0.3 0.5 1.0
1.1 1.3 1.4

Our focus

and
are correlated

CORRELATION 
IS NOT 

CAUSATION



We have to deal with confounder variables
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Example

Positive impact
Negative impact

0.5 0.7 1.5
1.4 1.8 2.0
2.7 3.0 3.7
2.3 2.9 3.2
1.8 1.9 2.3
1.6 1.9 2.2
0.6 0.9 1.4
0.3 0.5 1.0
1.1 1.3 1.4

Our focus

and
are correlated

and
are NOT correlated 
by conditioning on



We are currently working with Breast Cancer Data
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Real-world data example

Set of actionables 𝑿 Target 𝑇Set of confounders 𝒁
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Real-world data example

Set of actionables 𝑿 Target 𝑇Set of confounders 𝒁

Cancer typeSomatic genomic alterationsGermline genomic alterations
Sex
Age
…



We are currently working with Breast Cancer Data
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Real-world data example

Set of actionables 𝑿 Target 𝑇Set of confounders 𝒁

Cancer typeSomatic genomic alterationsGermline genomic alterations
Sex
Age
…

𝑇𝑃53678 = 1 ∧ 𝐸𝑅𝐵𝐵297: = 1 → 𝐵𝑎𝑠𝑎𝑙 | ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑡ℎ𝑒𝑟 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑐𝑦



[Budhathoki et al.] proposed the reliable rule effect 
estimation framework and developed a branch and bound 
algorithm for the discovery task.
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State of the Art

Budhathoki, K., Boley, M. and Vreeken, J., 2021. Discovering reliable causal rules. 
In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 1-9). 
Society for Industrial and Applied Mathematics.

= TRUE     THEN = TRUE GIVEN𝜎:

Actionable variables Target Counfounder(s)

Expand to 𝜎′
using



• Guarantees for multiple hypothesis testing

• Prove that the general problem is NP-hard

• Exploit dependency graph 𝐺 for rule expansion

• Extensive experiments on breast cancer data

• Correction for multiple hypothesis testing issues – Currently 
working on data dependent corrections with Rademacher Averages
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Contributions and Open Challenges

𝜎 𝜎′



99

My focus

Develop algorithms to:

• (Structure discovery) Discover causally related 
variables to a target

• (Effect estimation) Evaluate effect of causal rules

From observational data and providing guarantees
on the results
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Short recap

1 - Structure discovery
Discover causally related 
variables to a target

2 - Effect estimation 
Evaluate effect of causal rules

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 𝑇
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Short recap

1 - Structure discovery
Discover causally related 
variables to a target

2 - Effect estimation 
Evaluate effect of causal rules

𝑡𝑎𝑟𝑔𝑒𝑡 𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 𝑇



Hopefully true correlation example
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Hopefully true correlation example
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Recap

Exploiting causality methods                                
for knowledge discovery 
from observational data

Q & A TIME

Dario Simionato dario.simionato@phd.unipd.it

Padua, Italy

Code available at:      https://github.com/VandinLab/RAveL
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