Intelligent robot cleaner

Stanislav Slušný¹ Michal Zerola²

January 8, 2010

¹Institute of Computer Science

²Nuclear Physics Institute

Table of Contents

- Introduction
- 2 CP
- 3 Local search
- Results
- Discussion

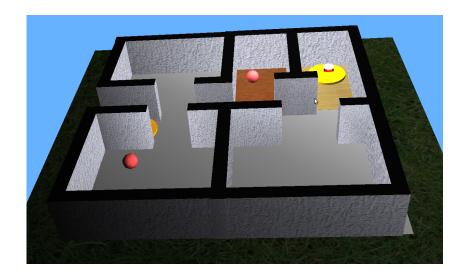
- Introduction
- 2 CP

- Introduction
- 2 CP
- 3 Local search

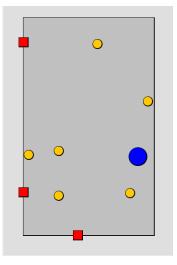
- Introduction
- 2 CP
- 3 Local search
- 4 Results

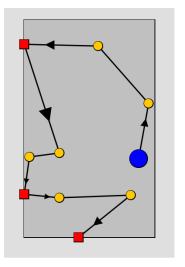
- Introduction
- 2 CP
- 3 Local search
- 4 Results
- Discussion

The problem

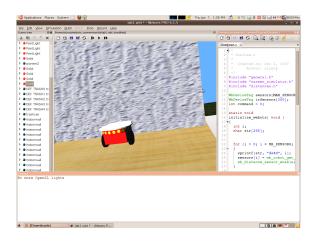


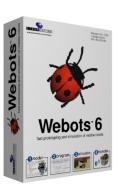
Plan - the solution





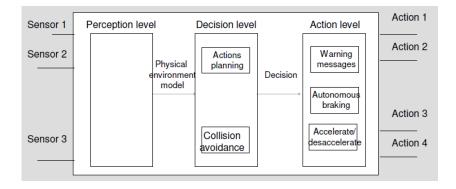
Webots - professional simulator



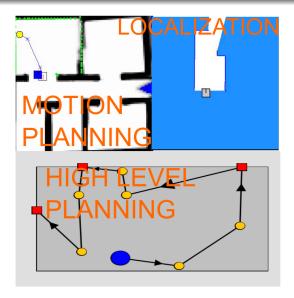


Pioneer-2

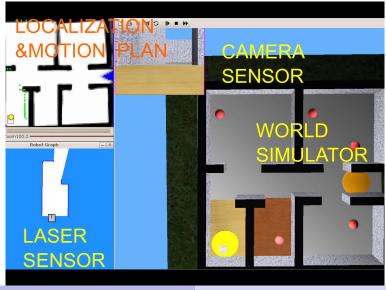
Robot planning



Included subproblems

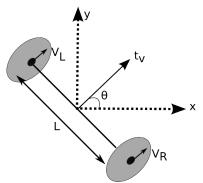


Demo



Dead reckoning

Differential drive:



$$\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} = \begin{pmatrix} x_{OLD} \\ y_{OLD} \\ \theta_{OLD} \end{pmatrix} + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{pmatrix} \quad (1)$$

$$\Delta \theta = \frac{\Delta s_R - \Delta s_L}{I} \tag{2}$$

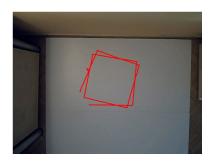
$$\Delta s = \frac{\Delta s_R + \Delta s_L}{2} \tag{3}$$

$$\Delta x = \Delta s. cos(\theta + \frac{\Delta \theta}{2}) \tag{4}$$

$$\Delta y = \Delta s. sin(\theta + \frac{\Delta \theta}{2}) \tag{5}$$

Reality

Make 10 squares of size 30 cm:



Monte-Carlo Localization

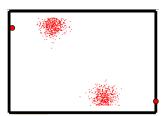
Takes command u_t and observation z_t , updates probability of robot location $p(x_{t-1})$

Input:

- motion model $p(x_t|x_{t-1}, u_t)$
- sensor model $p(z_t|x_{t-1})$

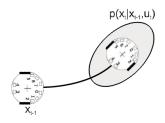
Output:

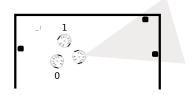
 \bullet $p_t(x)$



Monte-Carlo Localization

 $p(x_t)$ - pblity, that robots is located at the position x_t in time t u_t - control at time t 3 steps:





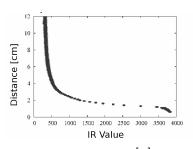
1. State prediction based on odometry

Correction step - Observation integration

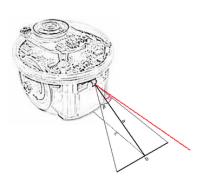
Third step is resampling.

2. Correction step - Observation integration

Distance sensors - bumpers only



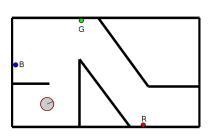
Camera - landmark detection



importance factor $w_t^{[m]}$: pbability of the measurement z_t under particle $x_t^{[m]}$, given by $w_t^{[m]} = p(z_t|x_t^{[m]})$.

Landmark detection and sensor fusion

Compute weight $w_t^{[m]}$ from detected contradictions:



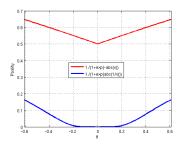
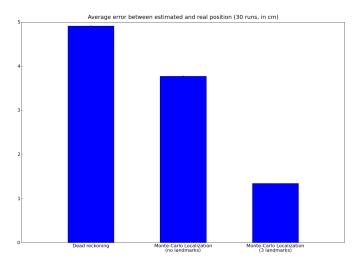


Figure: $p(z_t|x_t)$

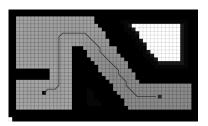
- **1** I should see the landmark (angle θ), but I cannot see it.
- ② I should not see the landmark, but I see it (angle θ).
- I should be near the wall but I am not
- I am near the wall but I should not

Localization - average errors



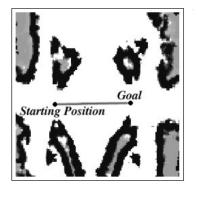
Motion planning

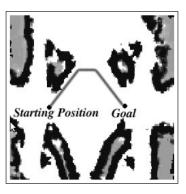
Planning with uncertainty: Value iteration on occupancy grid (2x2 cm):



... plan your movements in order to arrive at goal with minimum uncertainty

Nick Roy: coastal navigation

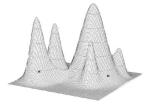




Local search - hill climber

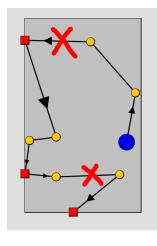
- Generate initial solution.
- Use neighborhood operator to generate new solution.
- If it is better, move there.
- Can fall into local optima
- Simulated annealing.

Beam search - hill climber



- Generate set of initial population
- Use neighborhood operator to generate new population
- Better solution substitutes its ancestor.
- More robust to local optima.

Neighborhood operator



Input: Previous plan.

Output: New (possibly) better plan.

Algorithm:

- Randomly choose predetermined number of edges, and delete them from the plan.
- Remaining edges are fixed (CP cannot touch them).
- Start CP to compute optimal plan from this partial plan.

Local search - pros and cons

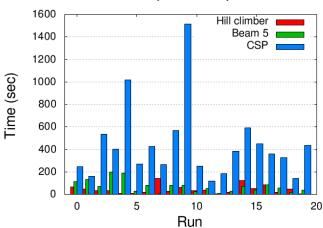
Local search methods

- Anytime planners
- Convergence to local optimum only
- Based on randomness

Global search methods (CP)

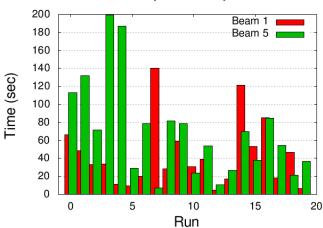
- Search for optimal solution
- Scalability
- Deterministic

Hill climbers vs Beam search vs CP (time)

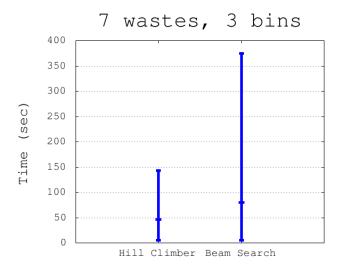


Hill climbers vs Beam search

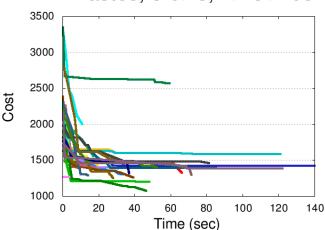
7 wastes, 3 bins, 20 runs



Hill climbers vs Beam search (average time)

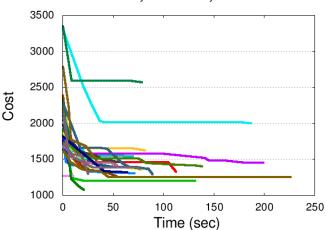


Hill climbers - time to compute optimal solution



Beam search - time to compute optimal solution

7 wastes, 3 bins, hill climber



Discussion

Beam search

- Always reached global optimum.
- Slower.
- More robust.
- Always outperformed CP.

Hill climbers

- 6/50 did not reach global optimum.
- Faster.
- If converged, outperformed CP.

Conclusions

- Global search is not scalable enough.
- Local search helped to solve bigger problems.
- Surprisingly good results with very simple operators.
- Anytime planners suitable for robotics.

Future work

- More clever operators.
- Bigger problems.