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A smart grid is a modernized electrical grid that uses analog or digital information and
communications technology to gather and act on information in an automated fashion
to improve the efficiency, reliability, economics, and sustainability of the production and
distribution of electricity.
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A smart grid is a modernized electrical grid that uses analog or digital information and
communications technology to gather and act on information in an automated fashion
to improve the efficiency, reliability, economics, and sustainability of the production and
distribution of electricity.

v
Demand side management

Demand side management (DSM) is the modification of consumer demand for energy
through various methods such as financial incentives and behavioral change through
education. Usually, the goal of demand side management is to encourage the
consumer to use less energy during peak hours, or to move the time of energy use to
off-peak times such as nighttime and weekends.
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Micro-grids

Motivations to balance electricity locally
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Micro-grids

Motivations to balance electricity locally
@ Electricity on an island
@ Maximize self-consumption to minimize cost of electricity
@ Reduce electricity losses on a distribution network
@ Reduce investments on a distribution network
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9 Current methods
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Triana

@ Prediction

@ Planning
© Real-time control

7 REALTIME "\
CONTROL
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PowerMatcher

Approach

PowerMatcher is based on the market equilibrium.
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e Case studies
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Lochem: Village in the Netherlands
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Meppel: Town in the Netherlands
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Project background

@ Housing project Meppel
@ District heating with biogas CHP
@ Domestic heat pumps

@ Smart control: CHP and Heat pumps
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Project background

@ Housing project Meppel
@ District heating with biogas CHP
@ Domestic heat pumps

@ Smart control: CHP and Heat pumps

Research objectives

@ Reduce aggregated peak electric loads caused by domestic heat pumps

@ Use as much of the CHP-generated electricity as possible for the heat pump
demand
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© simulations
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Model for simulation

Key questions

@ To what extend is it possible to reduce peak electricity demand of all heat pumps?

@ How to maintain thermal comfort within the houses if the heat pump control is not
based on conventional thermostat control?

@ |s the obtained heat pump control sensible?
@ Is the control method able to increase self consumption of generated electricity?
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Model for simulation

Key questions

@ To what extend is it possible to reduce peak electricity demand of all heat pumps?

@ How to maintain thermal comfort within the houses if the heat pump control is not
based on conventional thermostat control?

@ |s the obtained heat pump control sensible?

@ |s the control method able to increase self consumption of generated electricity?

Approach

@ Simulation study of 104 houses with a heat pump
@ Incorporate demand for space heating including:

Building heat loss

Ventilation heat loss

Solar heat gains through windows

Internal gains due to people and appliances

@ Incorporate domestic hot water demand schedules

@ Week with high + week with low space heating demand
@ Simulate individual “reference control” for all houses
@ Develop central optimal control method and simulate all houses
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Thermo-resistance model

The model
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Thermo-resistance model

The model

Quent
Ggain Qs
A, 4,
T > \ T, R T g
< o
o
Heat demand calculation

G Tzt — Trt
A Tep1 = Try) = ZT + Qh,t
T f
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Thermo-resistance model

The model

Quent
Ggain Qs
A, 4,
T, R, \ . R T,
— "\~ ‘%j O
< o
o
Heat demand calculation
G Tzt — Trt
(Tt = Tre) = o+ an
T f
© Tos—Top  Tas= T,
i(Tz,tH - Tz,t) = Al 2 + = & + qsolar,t +
T R Re
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Thermo-resistance model

The model

Quent
9gain Qg
A, 4,
T R \ T, R T g
A A A
< o
o
Heat demand calculation
C Tzt — Trt
(Tt = Tre) = o+ an
T f
© Tri—Tot  Tat—T.
i(Tz,tH - Tz,t) = Al 2 + = & + qsolar,t +
T Rf Re
Minimize o> " max { Torer,t — T2,,0} + B _ Ghyt
t t
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Aggregated electricity: A week in winter
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Aggregated electricity: A week in summer
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Aggregated electricity: Indoor temperature in winter
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e Mathematical model and results
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Problem description

Price Py
Maximal peak m

Other combinations

Consumption of electricity E¢

converter

Production of heat Hg

Operation state xp ¢ € {0, 1}

State of charge St
Bounds Lg ¢ < S¢t < Ugy

Demand D¢ ¢
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Problem description

Problem statement

Price Py
Maximal peak m

Other combinations

Consumption of electricity E¢

converter

Production of heat Hg

State of charge s;,
Bounds Lg ¢ < S¢t < Ugy

Operation state xz ¢ € {0,1}

Demand D¢ ¢

Sc,t+1 = Sc,t + Hexe,t — Dc,t
Lc,t < Set < Uc,t
Xe,t € {0, 1}
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Problem description

Problem statement

Price P, —
e el s Sc,t+1 = Sc,t + HcXc,t — Dc,[

Lc,t < Set < Uc,t
Xe,t € {0, 1}

Other combinations

Consumption of electricity E¢

Opesation stale X7 € {0, 1} Minimizing cost: minimize Z Z PiEcXe,t
t c

Production of heat Hg

buftfer

State of charge St
Bounds Lg p <S¢ < Ug g .

Demand D¢ ¢
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Problem description

Problem statement

Price P,
Maxin:;\eperakm Sc,t+1 = Sc,t + Hexe,t — Dc,[
Lc,t < Set < Uc,t
Other combinations
Xt € {0,1}
Consumption of electricity E¢
R Minimizing cost: ~ minimize » > PiEcXc
Production of heat Hg t c
Minimizing peak: minimize m
where m > E EcXe,t
State of charge s;, =
Bounds Lg g < Se.t = Ugq )
Demand D¢ ¢
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Problem description

Problem statement

Maxfn?;\ep:rakm Sc,t+1 = Sc,t + Hexe,t — Dc,[
Lot < 8ot < Ueyt
Other combinations
XCJ € {07 1}
Consumption of electricity E¢
R Minimizing cost: ~ minimize > > PiEcXo s
Production of heat Hg t c
Minimizing peak: minimize m
where m > E EcXe,t
State of charge s;, B
Bounds Lg g < Se.t = Ugq )
demand Demand D¢ ¢ " "
- Applications
w

@ Heating water

@ House heating

@ Fridges and freezers
@ Energy production
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Algorithms and complexity

Peak shaving

Find scheduling of converters fulfilling demands which minimize the maximal peak.
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Algorithms and complexity

Peak shaving

Find scheduling of converters fulfilling demands which minimize the maximal peak.
@ Strongly NP-hard (reduction from 3-partition problem)
@ NP-hard even for two time intervals (knapsack problem)

@ FPT algorithm: fix parameters are the number of converters and a ratio between
the capacity of a buffer and the production of a converter (dynamic programming)

@ Approximation algorithm with bounded difference between the optimal and the
approximated solution

@ Polynomial if all converters have the same consumption (job scheduling)

Find scheduling of converters which minimize the total cost of energy for converters.

v
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Algorithms and complexity

Peak shaving

Find scheduling of converters fulfilling demands which minimize the maximal peak.
@ Strongly NP-hard (reduction from 3-partition problem)
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@ FPT algorithm: fix parameters are the number of converters and a ratio between
the capacity of a buffer and the production of a converter (dynamic programming)

@ Approximation algorithm with bounded difference between the optimal and the
approximated solution
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Algorithms and complexity

Peak shaving

Find scheduling of converters fulfilling demands which minimize the maximal peak.
@ Strongly NP-hard (reduction from 3-partition problem)
@ NP-hard even for two time intervals (knapsack problem)

@ FPT algorithm: fix parameters are the number of converters and a ratio between
the capacity of a buffer and the production of a converter (dynamic programming)

@ Approximation algorithm with bounded difference between the optimal and the
approximated solution

@ Polynomial if all converters have the same consumption (job scheduling)

Find scheduling of converters which minimize the total cost of energy for converters.

@ Converters can be scheduled independently
@ Dynamic programming: O(T?)

v
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Algorithms and complexity

Peak shaving

Find scheduling of converters fulfilling demands which minimize the maximal peak.
@ Strongly NP-hard (reduction from 3-partition problem)
@ NP-hard even for two time intervals (knapsack problem)

@ FPT algorithm: fix parameters are the number of converters and a ratio between
the capacity of a buffer and the production of a converter (dynamic programming)

@ Approximation algorithm with bounded difference between the optimal and the
approximated solution

@ Polynomial if all converters have the same consumption (job scheduling)

Find scheduling of converters which minimize the total cost of energy for converters.
@ Converters can be scheduled independently
@ Dynamic programming: O(T?)
@ Greedy algorithm: O(T?)

v
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Algorithms and complexity

Peak shaving

Find scheduling of converters fulfilling demands which minimize the maximal peak.
@ Strongly NP-hard (reduction from 3-partition problem)
@ NP-hard even for two time intervals (knapsack problem)

@ FPT algorithm: fix parameters are the number of converters and a ratio between
the capacity of a buffer and the production of a converter (dynamic programming)

@ Approximation algorithm with bounded difference between the optimal and the
approximated solution

@ Polynomial if all converters have the same consumption (job scheduling)

Find scheduling of converters which minimize the total cost of energy for converters.
@ Converters can be scheduled independently
@ Dynamic programming: O(T?)
@ Greedy algorithm: O(T?)
@ Greedy algorithm with union-find: O(T«(T)) + sorting

v
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Preprocessing

Replace the recurrence formula by an explicit formula

Se,tt1 =  Set+ HeXet — Det
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Replace the recurrence formula by an explicit formula
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Preprocessing

Replace the recurrence formula by an explicit formula

Set+1 = St + Hexet — Dot
Se,t—1 + HeXe,t — Doyt + HeXe,t—1 — Do t—1

Se1 + He Z Xe,i — Z Dc,i

i<t i<t

Bounds on the state of charge

Letr1 < Scptv1 < Ueyer
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Replace the recurrence formula by an explicit formula

Set+1 = St + Hexet — Dot
Se,t—1 + HeXe,t — Doyt + HeXe,t—1 — Do t—1

Se1 + He Z Xe,i — Z Dc,i

i<t i<t
v

Bounds on the state of charge
Letr1 < Scptv1 < Ueyer
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i<t i<t
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Preprocessing

Replace the recurrence formula by an explicit formula

Set+1 = St + Hexet — Dot
Se,t—1 + HeXe,t — Doyt + HeXe,t—1 — Do t—1

Se1 + He Z Xe,i — Z Dc,i

i<t i<t

Bounds on the state of charge

Letr1 < Scptv1 < Ueyer

LC,I+1 < Sc1+ He Zxc,i - Z Dc,i < U t41

i<t i<t
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Preprocessing

Replace the recurrence formula by an explicit formula

Set+1 = St + Hexet — Dot
= Sgt—1+ Hexe,t — Det + HeXe,t—1 — Det—+

= Sc1+ He ZXc,i - Z D,

i<t i<t

v

Bounds on the state of charge

Letr1 < Scptv1 < Ueyer

L1 < 8o+ He Z Xe,i — Z De i < Ug, 41

i<t i<t
Lot — Sct + Z,-St De,i - ZX - Us,t+1 — Se,t + 224 Deji
> @i = =
He i<t He
Ac,t < Zxc,i < BCJ
i<t

v
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Preprocessing

Replace the recurrence formula by an explicit formula

Set+1 = St + Hexet — Dot
= Sgt—1+ Hexe,t — Det + HeXe,t—1 — Det—+

= Sc1+ He ZXc,i - Z D,

i<t i<t

v

Bounds on the state of charge

Letr1 < Scptv1 < Ueyer

LC,I+1 < Sc1+ He Zxc,i - Z Dc,i < U t41

i<t i<t
Lot — Sct + Z,-St De,i - ZX - Us,t+1 — Se,t + 224 Deji
> @i = =
He i<t He
Ac,t < Zxc,i < BCJ
i<t

where Ac,: and Bc,; are integers and

v
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Preprocessing

Replace the recurrence formula by an explicit formula

Set+1 = St + Hexet — Dot
= Sgt—1+ Hexe,t — Det + HeXe,t—1 — Det—+

= Sc1+ He ZXc,i - Z D,

i<t i<t

v

Bounds on the state of charge
Letr1 < Sept1 < Ug g

LC,I+1 < Sc1+ He Zxc,i - Z Dc,i < U t41

i<t i<t
Lottt — Se1 + Z/gr De,i < ZX < Ue,t+1 — Sc1 + Ziéf De,i
He = o He

Act < Zxc,i < Bot
i<t
where Ac,: and Bc,; are integers and
Act < Actrt < Ace+1and Bet < Bery1 < Ber+1and Ay, By € {0,1}.

v
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Preprocessing

Conditions on variables x ¢

@ Xct € {0, 1}
@ Act <> et Xei < Bot
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Preprocessing

Conditions on variables x ¢

@ Xct € {0, 1}
@ Act <> et Xei < Bot

Objective functions

Minimizing cost: ~ minimize Y > " PiEcXe,t
t c

Minimizing peak: minimize m
where m > Z Ec.Xct
c
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e Minimizing peak when all converters have the same consumption
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Minimizing peak when E; = 1

Decision problem

Ac,t < ZXc,i < Bc,t

i<t

> Xer < Mforalite {1,...,T}
c
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c

Dror, Kubiak, Dell’lOlmo

Problem P |ri, pi = 1, chains|Lmax is solvable in polynomial time.
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Minimizing peak when E; = 1

Decision problem

Ac,t < Zxc,i < Bc,t

i<t

> Xer < Mforalite {1,...,T}
c

Dror, Kubiak, Dell’lOlmo

Problem Pn|ri, pi = 1, chains|Lmax is solvable in polynomial time.

Job scheduling
® WLOG: A;,;r = B. 1
@ Jobis a pair (c,j) where j € {1,...,Ac 7}
@ Schedule job (c,j) in time z;; on one of M machines
@ Chain dependency: z;; < z . for j < j'
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i<t

> Xer < Mforalite {1,...,T}
c

Dror, Kubiak, Dell’lOlmo

Problem Pn|ri, pi = 1, chains|Lmax is solvable in polynomial time.
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@ WLOG: A;7 = Be 1
@ Jobis a pair (c,j) where j € {1,...,Ac 7}
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@ Release time for job (c, /) is minimal ¢ such that B, ; = t
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Minimizing peak when E; = 1

Decision problem

Ac,t < Zxc,i < Bc,t

i<t

> Xer < Mforalite {1,...,T}
c

Dror, Kubiak, Dell’lOlmo

Problem Pn|ri, pi = 1, chains|Lmax is solvable in polynomial time.

Job scheduling
@ WLOG: A;7 = Be 1
@ Jobis a pair (c,j) where j € {1,...,Ac 7}
@ Schedule job (c,j) in time z;; on one of M machines
@ Chain dependency: z;; < z . for j < j'
@ Release time for job (c, /) is minimal ¢ such that B, ; = t

@ Deadline for job (c, ) is minimal t such that Ac; =t
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e Greedy algorithm for minimizing cost
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Greedy algorithm for minimizing cost

Reformulated problem for single house
Given Ay, ..., Ar and By, ..., By satisfying As < A1 < Ar+1and B < Biy1 < B+ 1
and Ay, By € {0,1}, find x; € {0,1} fort € {1,..., T}
minimizing ZE:F%M
t

such that
A < in < B

i<t
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Greedy algorithm for minimizing cost
Reformulated problem for single house

Given Ay, ..., Ar and By, ..., By satisfying As < A1 < Ar+1and B < Biy1 < B+ 1
and Ay, By € {0,1}, find x; € {0,1} fort € {1,..., T}

minimizing Y  Pexq
t

such that
A < in < B

i<t

Lemma (Feasibility)
There exists a feasible solution if and only if A; < B:; for every t.
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Greedy algorithm for minimizing cost

Reformulated problem for single house

Given Ay, ..., Ar and By, ..., By satisfying As < A1 < Ar+1and B < Biy1 < B+ 1
and A, By € {0,1}, find x; € {0,1}fort € {1,..., T}

minimizing Y  Pexq
t

such that
A < fo < B

i<t

A\

Lemma (Feasibility)
There exists a feasible solution if and only if A; < B:; for every t.

Lemma (Existence of a solution with x; = 1)

The problem has a feasible solution satisfying x;» = 1 for a given t* if and only if
A1 < B
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Greedy algorithm for minimizing cost

Greedy algorithm when prices are non-negative

initialization: x; := 0 for all ¢
for t* sorted by prices do
if At*_1 < By~ then

Xt =1
L Update bounds A; and B;
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Greedy algorithm for minimizing cost

Greedy algorithm for general prices

initialization: x; := 0 for all ¢
for t* sorted by prices do
if At*_1 < By and (A;*_1 < AT or Py < 0) then

Xt =1
L Update bounds A; and B;
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Greedy algorithm for minimizing cost

Greedy algorithm for general prices

initialization: x; := 0 for all ¢
for t* sorted by prices do
if Ar*_1 < Bt* and (At*_1 < AT or P(* < 0) then

Xt =1
L Update bounds A; and B;

th=1 +max{t;At :At*_1} tsg = min{t; B[: B(*}

. (A ift < ta (B ift < tg
A = . Bf = )

At—1 IftZtA B[—1 IftZtB.

Jirka Fink Optimization in Smart Grids



Greedy algorithm for minimizing cost

Update
ta=1-+max{t; A = An_1} tg = min {t; Bt = By« }
A?: A ?ft<tA Bf: B: ?ft<t5
At—1 IftZtA B[—1 IftZtB.
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Summary

Greedy algorithm

initialization: x; := 0 for all ¢
for t* sorted by prices do
if A_1 < B~ and (A—1 < At or P < 0) then

Xt*Z:1

ta =14+ max{t; Ar = Ar_1}

tB:min{t;B,:Bp}

. A if t <t

CTA-1 ittt

B — B: !ft<t3
Bi—1 ift>ts.
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Greedy algorithm

initialization: x; := 0 for all ¢
for t* sorted by prices do
if A_1 < B~ and (Aw—1 < Ar or P~ < 0) then

Xt* =1

ta =14+ max{t; Ar = Ar_1}

g = min{t; B{ = B[*}

A — At !ft<tA
A—1 ift>ta

B — B: !ft<fs
Bi—1 ift>tg.

v

@ Direct implementation: O(T?)
@ Using binary trees: O(T log T)
@ Using union-find data structure: O(T«(T)) + sorting
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e Approximation algorithms for minimizing peak
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@ Let xZ; be the optimal (integer) solution of the original problem.
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@ Let xZ; be the optimal (integer) solution of the original problem.

o Let xff, be the optimal relaxed solution of the preprocessed problem.
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@ Let xZ; be the optimal (integer) solution of the original problem.

o Let xff, be the optimal relaxed solution of the preprocessed problem.
o Let xé, be the approximated (integer) solution.
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@ Let xZ; be the optimal (integer) solution of the original problem.

o Let xff, be the optimal relaxed solution of the preprocessed problem.
o Let xé, be the approximated (integer) solution.

Approximation

We find a solution xz; such that

A R
max XC: Eoxgr < E + max zc: mwil

where E = max. E;.
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@ Let xZ; be the optimal (integer) solution of the original problem.

o Let xff, be the optimal relaxed solution of the preprocessed problem.
o Let xé, be the approximated (integer) solution.

Approximation

We find a solution xz; such that

A R
max XC: Eoxgr < E + max zc: mwil

where E = max. E;. Since

R *
max ZC: Eoxcy < max ZC: EcxZ:
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@ Let xZ; be the optimal (integer) solution of the original problem.

o Let xff, be the optimal relaxed solution of the preprocessed problem.
o Let xé, be the approximated (integer) solution.

Approximation

We find a solution xz; such that

A R
max XC: Eoxgr < E + max zc: mwil

where E = max. E;. Since
R *
mtax EC Ecxct < mtax EC Ecx¢t

we have
A *
max > Ecxti<E+ max > Ecxiy.
c c

v
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Other objective functions

Minimizing peak (basic version)

Minimize m where m > >~ EcXc .
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Other objective functions

Minimizing peak (basic version)

Minimize m where m > >~ EcXc .

Minimizing peak with base load

Minimize mwhere m > F + 3 EcXct
and F; is the base load in time ¢.
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Other objective functions

Minimizing peak (basic version)

Minimize m where m > >~ EcXc .

Minimizing peak with base load

Minimize mwhere m > F + 3 EcXct
and F; is the base load in time ¢.

Minimize the absolute value

Minimize m where m > |F; + >, EcXc,q|-

Jirka Fink Optimization in Smart Grids



Other objective functions

Minimizing peak (basic version)

Minimize m where m > >~ EcXc .

Minimizing peak with base load

Minimize mwhere m > F + 3 EcXct
and F; is the base load in time ¢.

Minimize the absolute value
Minimize m where m > |Ft + > EcXc.t|.

Minimize the fluctuation

Minimize m, — m; where m; < Fy 4+ > Ecxet < m.
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Other objective functions

Minimizing peak (basic version)

Minimize m where m > >~ EcXc .

Minimizing peak with base load

Minimize mwhere m > F + 3 EcXct
and F; is the base load in time ¢.

Minimize the absolute value
Minimize m where m > |Ft + > EcXc.t|.

Minimize the fluctuation
Minimize m, — m; where m; < Fy 4+ > Ecxet < m.

The approximation error for minimizing the fluctuation

—E +ming F + 3, Eexzy < ming £t 3, Ecxd and
max; F + 3, Ecxo < E+max; Ft 3, EcXxg
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Algorithm

Basic steps

@ Preprocessing
@ Solve relaxed problem
© Round all non-integer values in the optimal relaxed solution
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Properties of the relaxed solution

Polytope P

(A1) Act < ZithC»f < Bt

(A2) 0 < Xer <1

(A3) m = 3", Ecxct where mis the optimal value of the objective function
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Properties of the relaxed solution

Polytope P
(A1) AC,t S Z,‘St XC,i S BC,T
(A2) 0 < Xt <A1

(A3) m = 3", Ecxct where mis the optimal value of the objective function

Properties of vertices of the polytope P

Consider two converters ¢; and ¢ and time intervals t; < £ such that

v
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Properties of the relaxed solution

(A1) Act < Yoy Xoi < Bt

(A2) 0 < Xcr <1

(A3) m = 3", Ecxct where mis the optimal value of the objective function |
Consider two converters ¢ and ¢, and time intervals # < & such that
(B1) Xey,ty s Xeq,to s Xoo,ty 5 Xop,to ¢ Z

v
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Properties of the relaxed solution

Polytope P
(A1) AC,t S Z,‘St XC,i S BC,T
(A2) 0 < Xt <A1

(A3) m = 3", Ecxct where mis the optimal value of the objective function

v

Consider two converters ¢ and ¢, and time intervals # < & such that
(B1) Xcy by 5 Xy, tos Xep,ty > Xop,tp & Z
(B2) > it Xor,is 2oict Xopt & Zioreveryt=1t,...,6— 1.
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Properties of the relaxed solution

Polytope P
(A1) AC,t S Z,‘St XC,i S BC,T
(A2) 0 < Xt <A1

(A3) m = 3", Ecxct where mis the optimal value of the objective function

v

Consider two converters ¢ and ¢, and time intervals # < & such that
(B1) Xey,ty s Xeq,to s Xoo,ty 5 Xop,to ¢ Z

(B2) > it Xor,is 2oict Xopt & Zioreveryt=1t,...,6— 1.

Then, x is a not a vertex because x lies of the following segment line of P.
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Properties of the relaxed solution

Polytope P
(A1) AC,t S Z,‘St XC,i S BC,T
(A2) 0 < Xt <A1

(A3) m = 3", Ecxct where mis the optimal value of the objective function

v

Consider two converters ¢ and ¢, and time intervals # < & such that
(B1) Xey,ty 5 Xey by Xop ty 5 Xop,tp ¢ Z

(B2) > it Xor,is 2oict Xopt & Zioreveryt=1t,...,6— 1.

Then, x is a not a vertex because x lies of the following segment line of P.
(C1) xgj’t1 = Xty + %

(C2) Xg,tz = Xey,tp — Ei

&
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Properties of the relaxed solution

(A1) Act < Yoy Xoi < Bt

(A2) 0 < Xcr <1

(A3) m = 3", Ecxct where mis the optimal value of the objective function |
Consider two converters ¢ and ¢, and time intervals # < & such that
(B1) Xey,ty s Xeq,to s Xoo,ty 5 Xop,to ¢ Z

(B2) > it Xor,is 2oict Xopt & Zioreveryt=1t,...,6— 1.

Then, x is a not a vertex because x lies of the following segment line of P.

o _ o
C1) X4 = Xer,u + Es,

(

(C2) Xg .1, = Xoy,tp — %
(C3) X§ 1y = Kooty — £
(C4) Xg 1, = Xopty + E%

v
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Properties of the relaxed solution

(A1) Act < Yoy Xoi < Bt

(A2) 0 < Xcr <1

(A3) m = 3", Ecxct where mis the optimal value of the objective function |
Consider two converters ¢ and ¢, and time intervals # < & such that
(B1) Xey,ty s Xeq,to s Xoo,ty 5 Xop,to ¢ Z

(B2) > it Xor,is 2oict Xopt & Zioreveryt=1t,...,6— 1.

Then, x is a not a vertex because x lies of the following segment line of P.

o _ o
C1) X4 = Xer,u + Es,

{e% p— [e3
02 XC1,t2 - X01,f2 ~ E.,

&

Ee.
E"Z

(

(C2)

(C3) X4 = Xop.ty —
(C4) Xg 1, = Xopty + E%
(C9)

C5) X&'t = Xc,t otherwise

v
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Bipartite graph G of non-integer values of x

@ Set of time intervals.
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Bipartite graph G of non-integer values of x

@ Set of time intervals.

@ Set of pairs (¢, W) where c is a converter and W contains a (maximal) sequence
ti,..., b — 1 of time intervals such that Z,Stxc,, ¢ Zforeveryt=t,...,b—1.
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Bipartite graph G of non-integer values of x

@ Set of time intervals.

@ Set of pairs (¢, W) where c is a converter and W contains a (maximal) sequence
ti,..., b — 1 of time intervals such that Z,Stxc,, ¢ Zforeveryt=t,...,b—1.

Edge joins vertices t and (¢, W) if t € W. \
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Bipartite graph G of non-integer values of x

@ Set of time intervals.

@ Set of pairs (¢, W) where c is a converter and W contains a (maximal) sequence
ti,..., b — 1 of time intervals such that Z,Stxc,, ¢ Zforeveryt=t,...,b—1.

Edge joins vertices t and (¢, W) if t € W.

Observation
If x is a vertex of the polytope, then G is a forest.
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Bipartite graph G of non-integer values of x

@ Set of time intervals.

@ Set of pairs (¢, W) where c is a converter and W contains a (maximal) sequence
ti,..., b — 1 of time intervals such that Z,Stxc,,- ¢ Zforeveryt=t,...,b—1.

Edge joins vertices t and (¢, W) if t € W.

Observation
If x is a vertex of the polytope, then G is a forest.

Observation

There is a sequence (¢, W), ..., (ck, Wk) of all vertices of the second partity of G
such that for every i vertex (c;, W;) has at most one non-leaf neighbour ; in the graph

Gi = G\ {(Cis1, Wis1), ..., (ck, W)}
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Conclusion

Improve approximation error

@ The integral gap is optimal.
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Conclusion

Improve approximation error

@ The integral gap is optimal.

@ For which e there exists a polynomial-time approximation algorithm with absolute
error at most eE?
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Conclusion

Improve approximation error

@ The integral gap is optimal.

@ For which e there exists a polynomial-time approximation algorithm with absolute
error at most eE?

v
Similar models

Are there polynomial-time approximation algorithms with known worst-case
approximation factors for similar models, e.g.

\
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Conclusion

Improve approximation error

@ The integral gap is optimal.

@ For which e there exists a polynomial-time approximation algorithm with absolute
error at most eE?

Similar models

Are there polynomial-time approximation algorithms with known worst-case
approximation factors for similar models, e.g.

| \

@ converters with three states: heating water for domestic hot water demands,
space heating or off,

\
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Conclusion

Improve approximation error

@ The integral gap is optimal.

@ For which e there exists a polynomial-time approximation algorithm with absolute
error at most eE?

Similar models

Are there polynomial-time approximation algorithms with known worst-case
approximation factors for similar models, e.g.

| \

@ converters with three states: heating water for domestic hot water demands,
space heating or off,

@ converters with conditions on minimal running and off time, and starting and
shutdown profiles,

A\
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Conclusion

Improve approximation error

@ The integral gap is optimal.

@ For which e there exists a polynomial-time approximation algorithm with absolute
error at most eE?

Similar models

Are there polynomial-time approximation algorithms with known worst-case
approximation factors for similar models, e.g.

| \

@ converters with three states: heating water for domestic hot water demands,
space heating or off,

@ converters with conditions on minimal running and off time, and starting and
shutdown profiles,

@ buffers with thermal losses,

A\
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Conclusion

Improve approximation error

@ The integral gap is optimal.

@ For which e there exists a polynomial-time approximation algorithm with absolute
error at most eE?

Similar models

Are there polynomial-time approximation algorithms with known worst-case
approximation factors for similar models, e.g.

| \

@ converters with three states: heating water for domestic hot water demands,
space heating or off,

@ converters with conditions on minimal running and off time, and starting and
shutdown profiles,

@ buffers with thermal losses,

@ other electrical device you (may) have at home?

A\
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