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Smart Grids

Smart grids
A smart grid is a modernized electrical grid that uses analog or digital information and
communications technology to gather and act on information in an automated fashion
to improve the efficiency, reliability, economics, and sustainability of the production and
distribution of electricity.

Demand side management
Demand side management (DSM) is the modification of consumer demand for energy
through various methods such as financial incentives and behavioral change through
education. Usually, the goal of demand side management is to encourage the
consumer to use less energy during peak hours, or to move the time of energy use to
off-peak times such as nighttime and weekends.
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Micro-grids

Micro-grids
Motivations to balance electricity locally

Electricity on an island

Maximize self-consumption to minimize cost of electricity

Reduce electricity losses on a distribution network

Reduce investments on a distribution network
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Triana

Steps
1 Prediction
2 Planning
3 Real-time control
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PowerMatcher

Approach
PowerMatcher is based on the market equilibrium.
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Lochem: Village in the Netherlands
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Meppel: Town in the Netherlands
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Project MeppelEnergie
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Project background

Concept
Housing project Meppel

District heating with biogas CHP

Domestic heat pumps

Smart control: CHP and Heat pumps

Research objectives
Reduce aggregated peak electric loads caused by domestic heat pumps

Use as much of the CHP-generated electricity as possible for the heat pump
demand
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Model for simulation

Key questions
To what extend is it possible to reduce peak electricity demand of all heat pumps?

How to maintain thermal comfort within the houses if the heat pump control is not
based on conventional thermostat control?

Is the obtained heat pump control sensible?

Is the control method able to increase self consumption of generated electricity?

Approach
Simulation study of 104 houses with a heat pump
Incorporate demand for space heating including:

Building heat loss
Ventilation heat loss
Solar heat gains through windows
Internal gains due to people and appliances

Incorporate domestic hot water demand schedules

Week with high + week with low space heating demand

Simulate individual “reference control” for all houses

Develop central optimal control method and simulate all houses
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Thermo-resistance model

The model

Heat demand calculation

Cf

τ
(Tf ,t+1 − Tf ,t ) =

Tz,t − Tf ,t

Rf
+ qh,t

Cz

τ
(Tz,t+1 − Tz,t ) =

Tf ,t − Tz,t

Rf
+

Ta,t − Tz,t

Re
+ qsolar,t + · · ·

Minimize α
∑

t

max
{

Tpref ,t − Tz,t , 0
}
+ β

∑
t

qh,t
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Aggregated electricity: A week in winter
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Aggregated electricity: A week in summer
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Aggregated electricity: Indoor temperature in winter
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Problem description

Schema

Problem statement

sc,t+1 = sc,t + Hcxc,t − Dc,t

Lc,t ≤ sc,t ≤ Uc,t

xc,t ∈ {0, 1}

Minimizing cost: minimize
∑

t

∑
c

PtEcxc,t

Minimizing peak: minimize m

where m ≥
∑

c

Ecxc,t

Applications
Heating water

House heating

Fridges and freezers

Energy production
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Algorithms and complexity

Peak shaving
Find scheduling of converters fulfilling demands which minimize the maximal peak.

Strongly NP-hard (reduction from 3-partition problem)

NP-hard even for two time intervals (knapsack problem)

FPT algorithm: fix parameters are the number of converters and a ratio between
the capacity of a buffer and the production of a converter (dynamic programming)

Approximation algorithm with bounded difference between the optimal and the
approximated solution

Polynomial if all converters have the same consumption (job scheduling)

Minimizing cost
Find scheduling of converters which minimize the total cost of energy for converters.

Converters can be scheduled independently

Dynamic programming: O(T 2)

Greedy algorithm: O(T 2)

Greedy algorithm with union-find: O(Tα(T )) + sorting
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Preprocessing

Replace the recurrence formula by an explicit formula

sc,t+1 = sc,t + Hcxc,t − Dc,t

= sc,t−1 + Hcxc,t − Dc,t + Hcxc,t−1 − Dc,t−1

= sc,1 + Hc

∑
i≤t

xc,i −
∑
i≤t

Dc,i

Bounds on the state of charge

Lc,t+1 ≤ sc,t+1 ≤ Uc,t+1

Lc,t+1 ≤ sc,1 + Hc

∑
i≤t

xc,i −
∑
i≤t

Dc,i ≤ Uc,t+1

Lc,t+1 − sc,1 +
∑

i≤t Dc,i

Hc
≤

∑
i≤t

xc,i ≤
Uc,t+1 − sc,1 +

∑
i≤t Dc,i

Hc

Ac,t ≤
∑
i≤t

xc,i ≤ Bc,t

where Ac,t and Bc,t are integers and
Ac,t ≤ Ac,t+1 ≤ Ac,t + 1 and Bc,t ≤ Bc,t+1 ≤ Bc,t + 1 and A1,B1 ∈ {0, 1}.
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Preprocessing

Conditions on variables xc,t

xc,t ∈ {0, 1}
Ac,t ≤

∑
i≤t xc,i ≤ Bc,t

Objective functions

Minimizing cost: minimize
∑

t

∑
c

PtEcxc,t

Minimizing peak: minimize m

where m ≥
∑

c

Ecxc,t
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Minimizing peak when Ec = 1

Decision problem

Ac,t ≤
∑
i≤t

xc,i ≤ Bc,t

∑
c

xc,t ≤ M for all t ∈ {1, . . . ,T}

Dror, Kubiak, Dell’Olmo
Problem Pm|ri , pi = 1, chains|Lmax is solvable in polynomial time.

Job scheduling
WLOG: Ac,T = Bc,T

Job is a pair (c, j) where j ∈ {1, . . . ,Ac,T}
Schedule job (c, j) in time zc,j on one of M machines

Chain dependency: zc,j < zc,j′ for j < j ′

Release time for job (c, j) is minimal t such that Bc,j = t

Deadline for job (c, j) is minimal t such that Ac,j = t
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Greedy algorithm for minimizing cost

Reformulated problem for single house
Given A1, . . . ,AT and B1, . . . ,BT satisfying At ≤ At+1 ≤ At + 1 and Bt ≤ Bt+1 ≤ Bt + 1
and A1,B1 ∈ {0, 1}, find xt ∈ {0, 1} for t ∈ {1, . . . ,T}

minimizing
∑

t

Ptxt

such that
At ≤

∑
i≤t

xi ≤ Bt

Lemma (Feasibility)
There exists a feasible solution if and only if At ≤ Bt for every t .

Lemma (Existence of a solution with xt? = 1)
The problem has a feasible solution satisfying xt? = 1 for a given t? if and only if
At?−1 < Bt? .
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Greedy algorithm for minimizing cost

Greedy algorithm when prices are non-negative

initialization: xt := 0 for all t
for t? sorted by prices do

if At?−1 < Bt? then
xt? := 1
Update bounds At and Bt

Update

tA = 1 + max {t ;At = At?−1} tB = min {t ;Bt = Bt?}

A?t =

{
At if t < tA
At − 1 if t ≥ tA

B?t =

{
Bt if t < tB
Bt − 1 if t ≥ tB.
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Greedy algorithm for minimizing cost

Greedy algorithm for general prices

initialization: xt := 0 for all t
for t? sorted by prices do

if At?−1 < Bt? and (At?−1 < AT or Pt? < 0) then
xt? := 1
Update bounds At and Bt

Update

tA = 1 + max {t ;At = At?−1} tB = min {t ;Bt = Bt?}

A?t =

{
At if t < tA
At − 1 if t ≥ tA
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Greedy algorithm for minimizing cost

Update

tA = 1 + max {t ;At = At?−1} tB = min {t ;Bt = Bt?}

A?t =

{
At if t < tA
At − 1 if t ≥ tA

B?t =

{
Bt if t < tB
Bt − 1 if t ≥ tB.

At

Bt

A?
t

B?
t

tB t? tA
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Summary

Greedy algorithm

initialization: xt := 0 for all t
for t? sorted by prices do

if At?−1 < Bt? and (At?−1 < AT or Pt? < 0) then
xt? := 1
tA = 1 + max {t ;At = At?−1}
tB = min {t ;Bt = Bt?}

A?t =

{
At if t < tA
At − 1 if t ≥ tA

B?t =

{
Bt if t < tB
Bt − 1 if t ≥ tB.

Complexity

Direct implementation: O(T 2)

Using binary trees: O(T log T )

Using union-find data structure: O(Tα(T )) + sorting
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Result

Notation
Let x?c,t be the optimal (integer) solution of the original problem.

Let xR
c,t be the optimal relaxed solution of the preprocessed problem.

Let xA
c,t be the approximated (integer) solution.

Approximation

We find a solution xA
c,t such that

max
t

∑
c

EcxA
c,t ≤ E + max

t

∑
c

EcxR
c,t

where E = maxc Ec . Since

max
t

∑
c

EcxR
c,t ≤ max

t

∑
c

Ecx?c,t

we have
max

t

∑
c

EcxA
c,t ≤ E + max

t

∑
c

Ecx?c,t .
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Other objective functions

Minimizing peak (basic version)

Minimize m where m ≥
∑

c Ecxc,t .

Minimizing peak with base load

Minimize m where m ≥ Ft +
∑

c Ecxc,t

and Ft is the base load in time t .

Minimize the absolute value
Minimize m where m ≥ |Ft +

∑
c Ecxc,t |.

Minimize the fluctuation
Minimize mu −ml where ml ≤ Ft +

∑
c Ecxc,t ≤ mu .

The approximation error for minimizing the fluctuation

−E + mint Ft +
∑

c Ecx?c,t ≤ mint Ft
∑

c EcxA
c,t and

maxt Ft +
∑

c EcxA
c,t ≤ E + maxt Ft

∑
c Ecx?c,t
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Algorithm

Basic steps
1 Preprocessing
2 Solve relaxed problem
3 Round all non-integer values in the optimal relaxed solution
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Properties of the relaxed solution

Polytope P
(A1) Ac,t ≤

∑
i≤t xc,i ≤ Bc,t

(A2) 0 ≤ xc,t ≤ 1

(A3) m =
∑

c Ecxc,t where m is the optimal value of the objective function

Properties of vertices of the polytope P
Consider two converters c1 and c2 and time intervals t1 < t2 such that

(B1) xc1,t1 , xc1,t2 , xc2,t1 , xc2,t2 /∈ Z
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Bipartite graph G of non-integer values of x

Vertices
Set of time intervals.

Set of pairs (c,W ) where c is a converter and W contains a (maximal) sequence
t1, . . . , t2 − 1 of time intervals such that

∑
i≤t xc,i /∈ Z for every t = t1, . . . , t2 − 1.

Edges
Edge joins vertices t and (c,W ) if t ∈ W .

Observation
If x is a vertex of the polytope, then G is a forest.

Observation
There is a sequence (c1,W1), . . . , (ck ,Wk ) of all vertices of the second partity of G
such that for every i vertex (ci ,Wi) has at most one non-leaf neighbour ti in the graph

Gi = G \ {(ci+1,Wi+1), . . . , (ck ,Wk )} .
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Conclusion

Improve approximation error
The integral gap is optimal.

For which ε there exists a polynomial-time approximation algorithm with absolute
error at most εE?

Similar models
Are there polynomial-time approximation algorithms with known worst-case
approximation factors for similar models, e.g.

converters with three states: heating water for domestic hot water demands,
space heating or off,

converters with conditions on minimal running and off time, and starting and
shutdown profiles,

buffers with thermal losses,

other electrical device you (may) have at home?
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