Semantic Image Editing

Adéla Šubrtová

Introduction

- 2nd year PhD student
- Visual Recognition Group at FEE CTU
- Supervisor: Jan Čech, Supervisor specialist: Jiří Matas
- Research interests: super-resolution, image synthesis, image editing
- Personal interests: Bouldering , Reading, Psychology

Outline

- Intro to semantic image editing
- Generative models
- GANs
- Editing using GANs
- Project: Hairstyle Transfer between Face Images
- Project: Chunky GAN: Real Image Inversion via Segments
 - Image Inversion Methods
 - ChunkyGAN method
- Conclusion

What is Semantic Image Editing?

"Less Angry"

Generative models

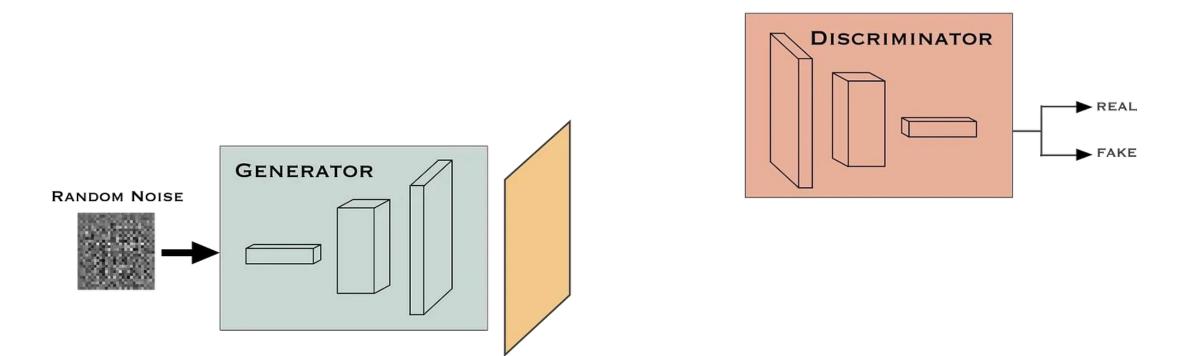
- Aim to model our data distribution p(x)
- Transform distribution that we can sample from to a complex one
- Examples
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN) StyleGAN, BigGAN
 - Diffusion models DALLE 2, Imagen, Stable Diffusion

"teddy bears mixing sparkling chemicals as mad scientists in a steampunk style"

1024 x 1024 px

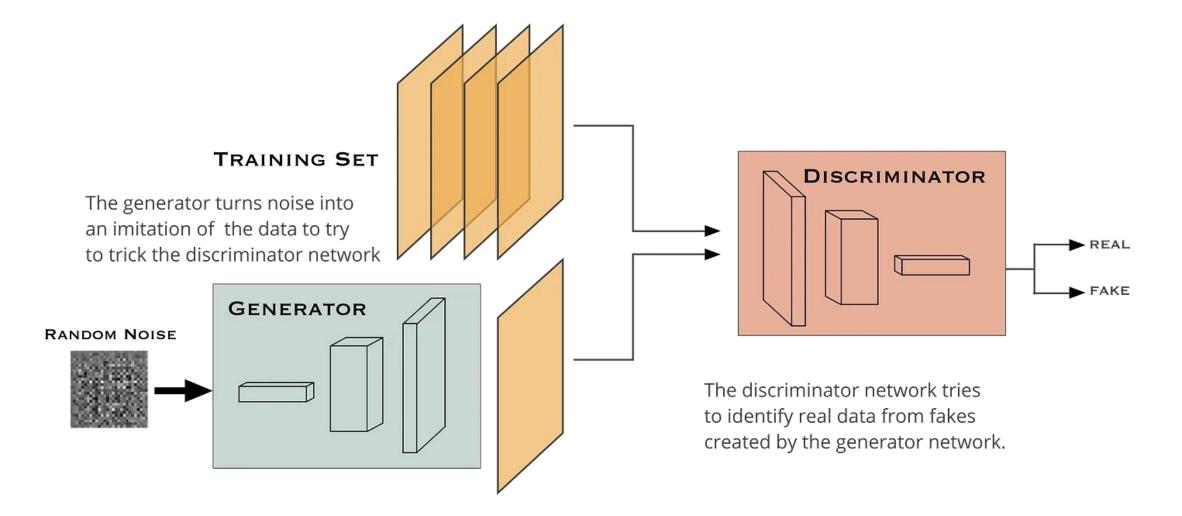
512 x 512 px

Generative Adversarial Networks (GAN)



Goodfellow et al. "Generative Adversarial Nets", Advances in Neural Information Processing Systems, 2014

GAN Training



Source: https://towardsdatascience.com/image-generation-in-10-minutes-with-generative-adversarial-networks-c2afc56bfa3b

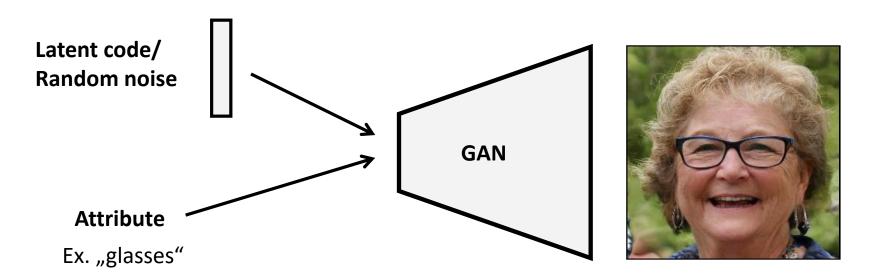
GAN Training

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

- Alternating optimization of G and D
- Training is unstable mode collapse, vanishing gradient
- Many works improve/stabilize the training

GAN-based image editing

1. Conditioned GANs on semantic segmentation labels or other attributes



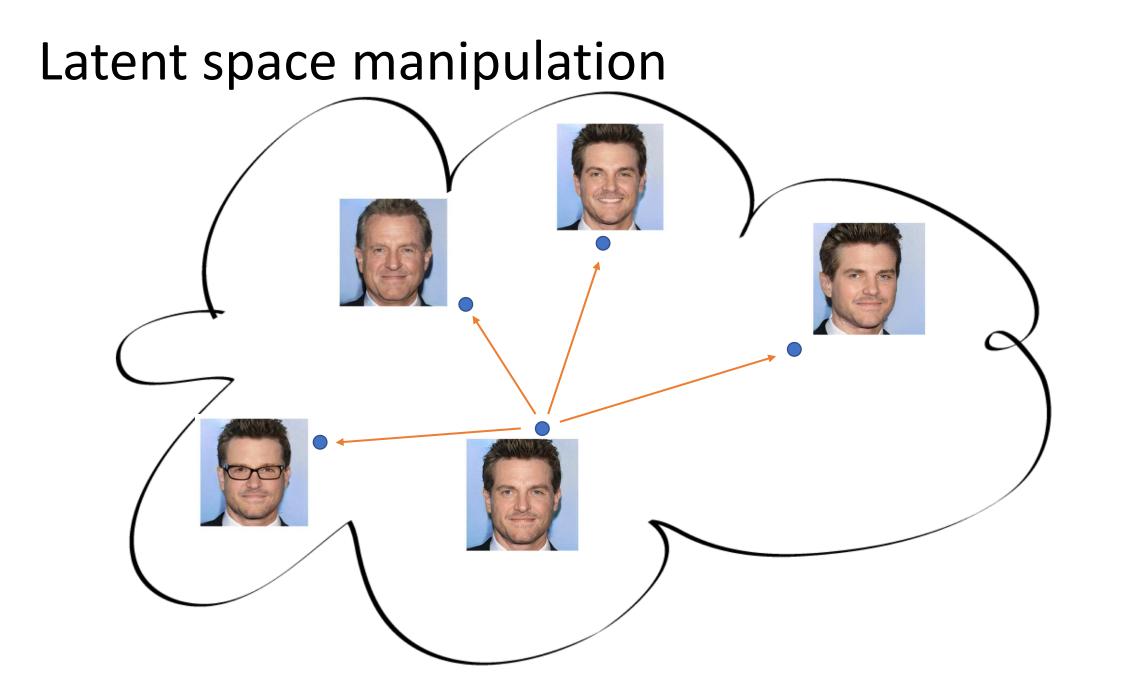
GAN-based image editing

2. Attribute-classifier-guided manipulation

Gradient descent

GAN-based image editing

3. Latent space dissection – finding interpretable disentangled directions in the latent space of a pre-trained GAN



GAN-base image editing

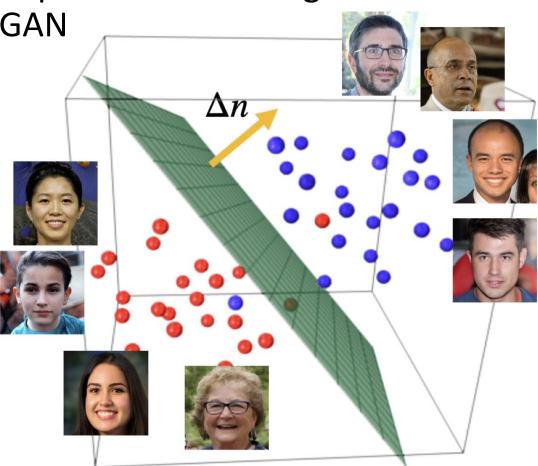
 Latent space dissection – finding interpretable disentangled directions in the latent space of a pre-trained GAN

Supervised

• Binary classification / regression in the latent space

Unsupervised

PCA in the latent space
+ interpretation of the directions



Hairstyle Transfer between Face Images

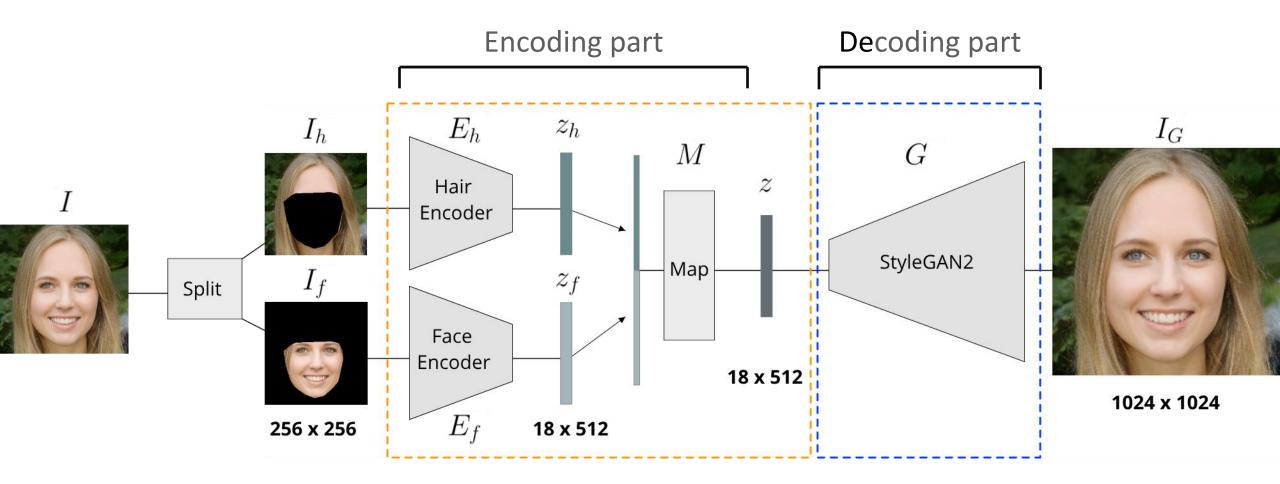
A. Šubrtová, J. Čech, V. Franc, Hairstyle Transfer between Face Images, In Proc. IEEE Automatic Face and Gesture Recognition, 2021

Are you thinking about getting a new haircut?

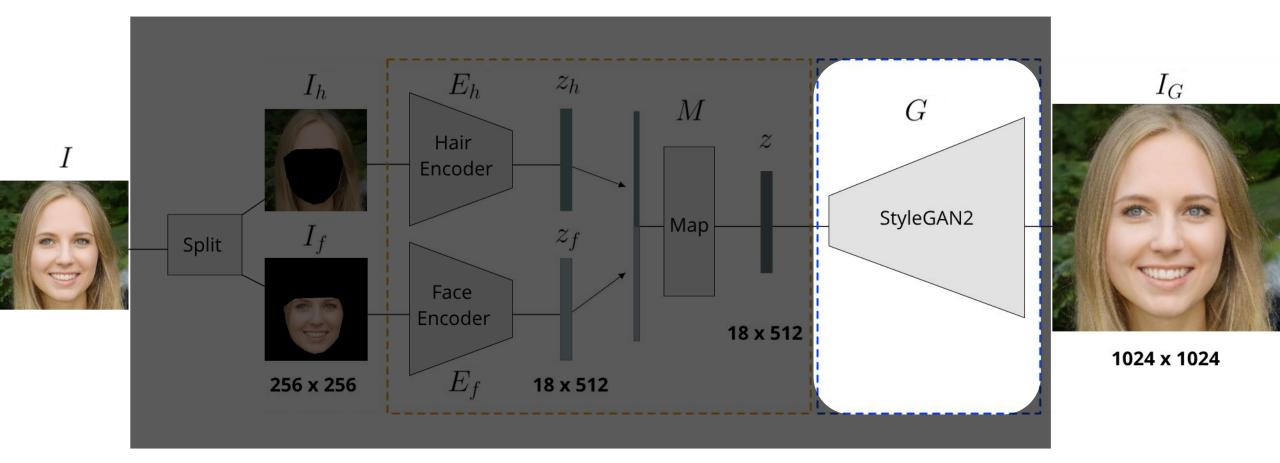
Hairstyle Transfer between Face Images

- Fully automatic, including hair and face region separation
- Handles different pose and illumination

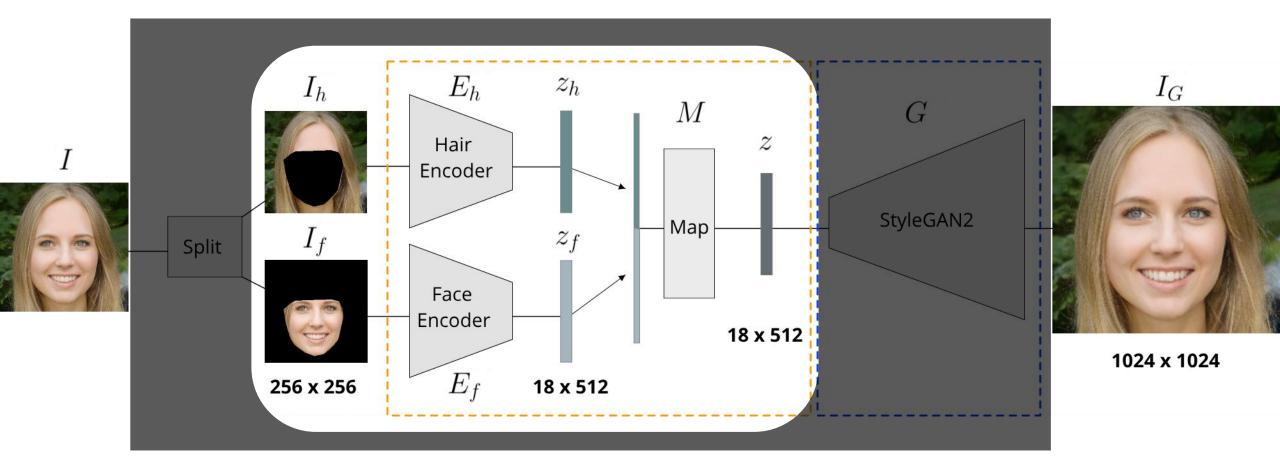
Architecture



Architecture

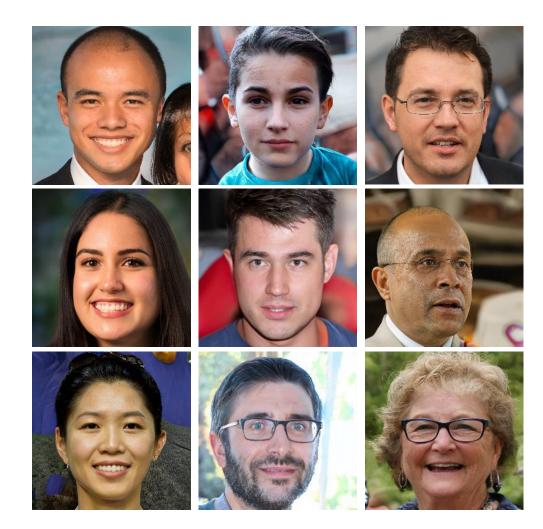


Architecture



Synthetic Dataset

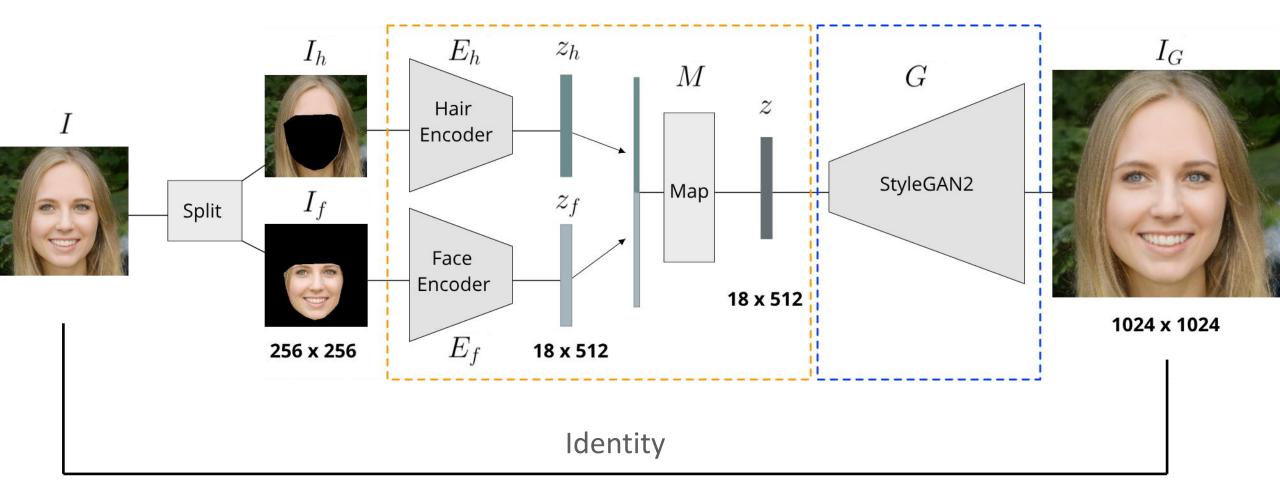
- Generatived by pre-trained GAN (StyleGAN2)
- Photorealistic face images with high resolution (1024 x 1024 px)
- Potentially unlimited source of training data



Randomly generated images

Karras et. al, Analyzing and Improving the Image Quality of StyleGAN, CVPR, 2020

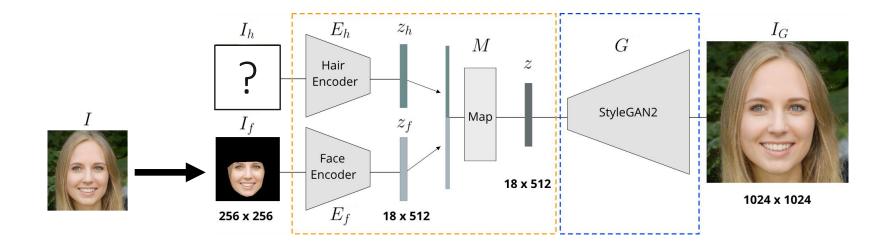
```
Training - baseline
```



Baseline Training – problems with alignment

Path to Hairstyle Transfer

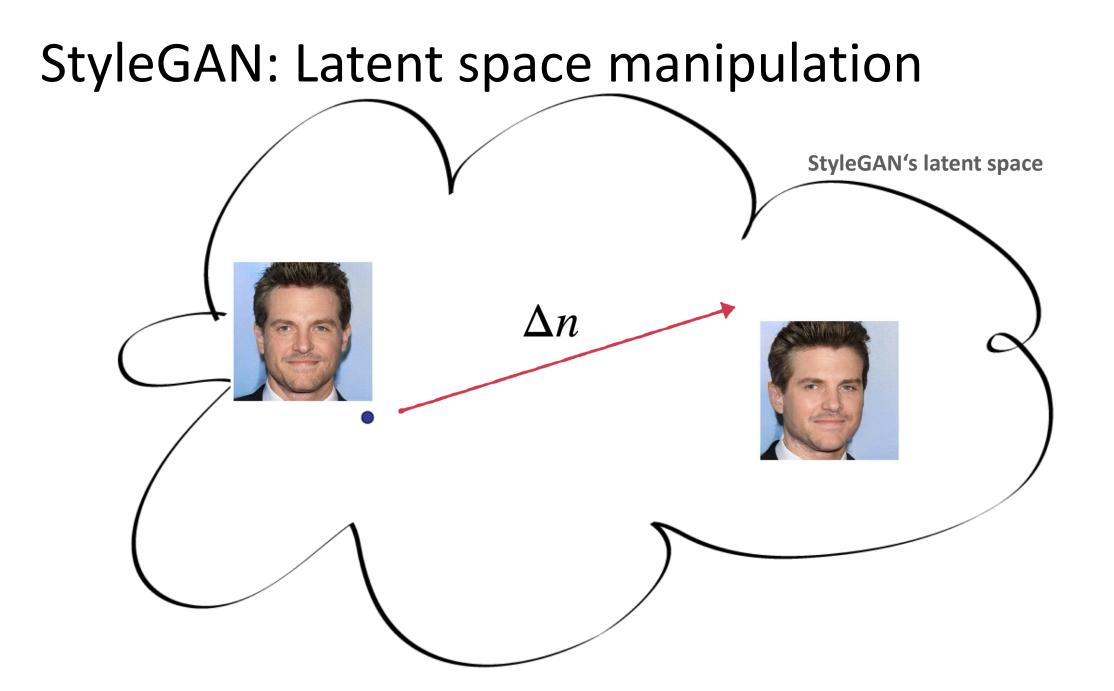
- Goal: Hairstyle transfer for **unaligned** pair of images
- Hair encoder should ignore the geometry
- Train from images with different pose

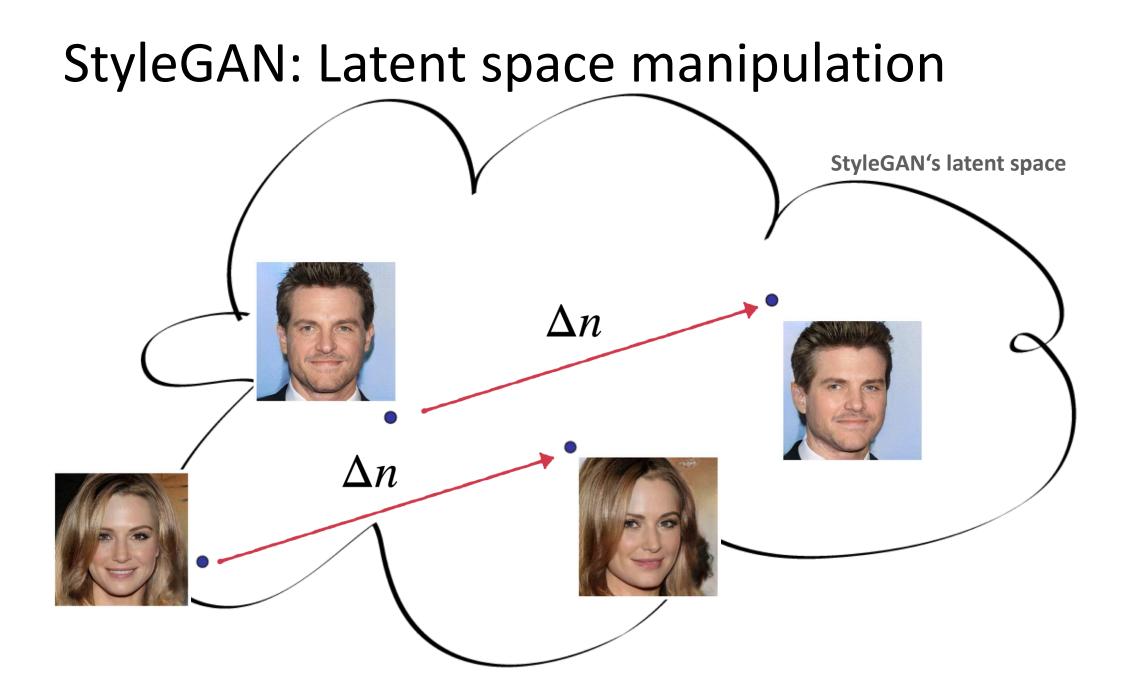


Improving the Dataset

• Where to get misaligned pairs of images with the same hair?

Latent Space Manipulation...

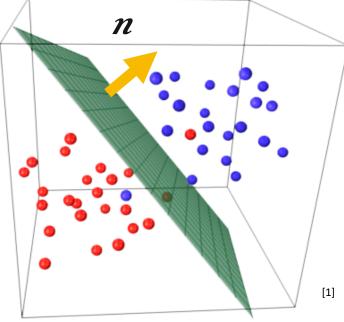




Finding yaw direction in face space of StyleGAN

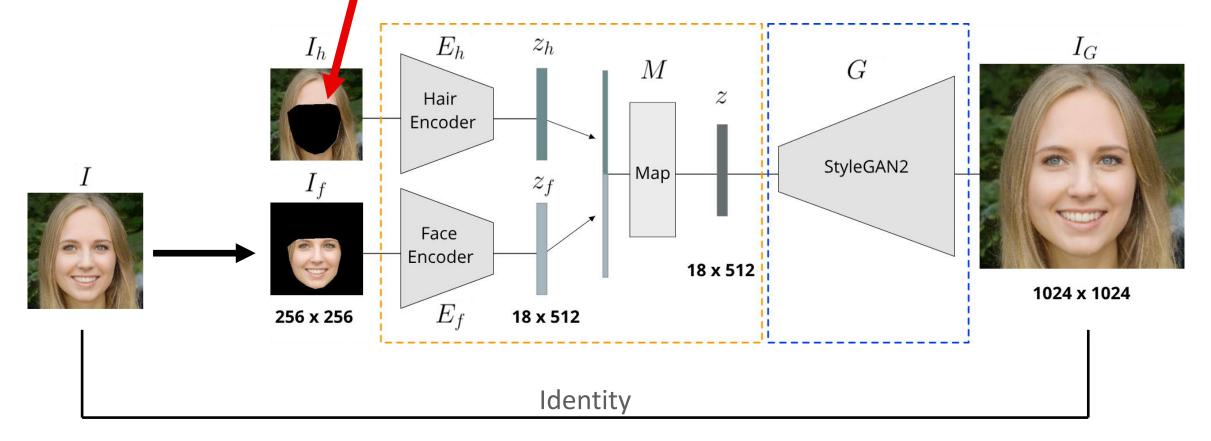
- Direction estimation ~ classification in the latent space
- 2 classes: faces looking to the left and right
- z code of a face image

 $z - 2k \cdot n$ $z - k \cdot n$ z $z + k \cdot n$ $z + 2k \cdot n$

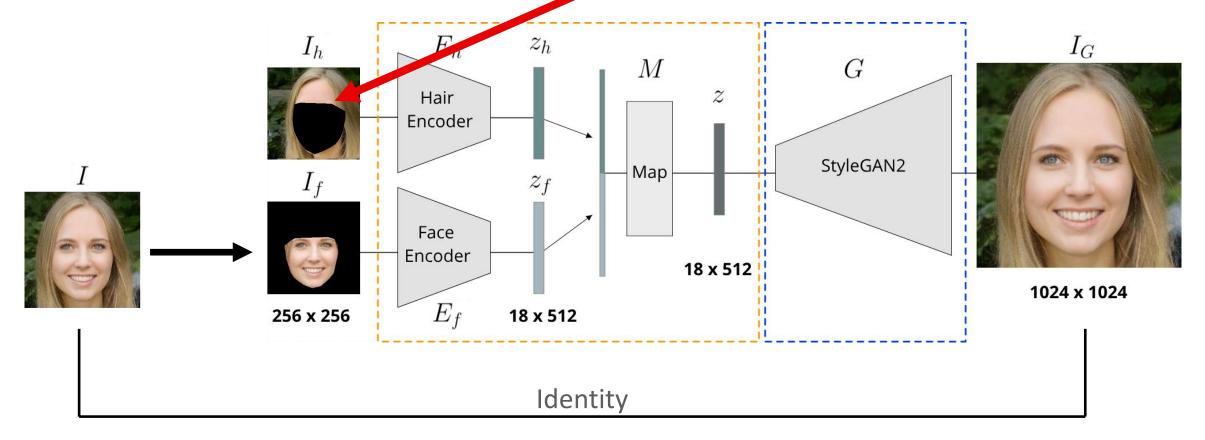


[1] https://appliedmachinelearning.files.wordpress.com/2017/03/svm_logo1.png

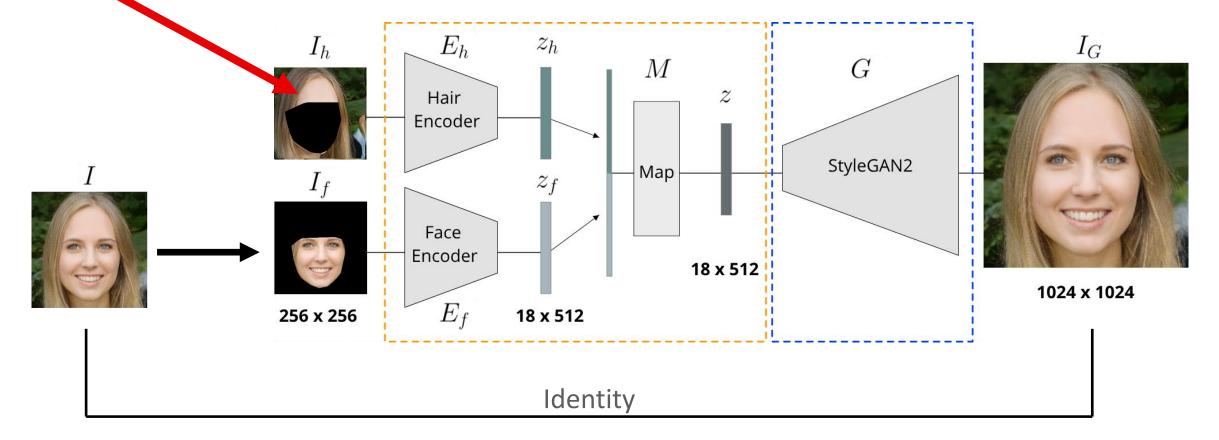
Improved Training



Improved Training

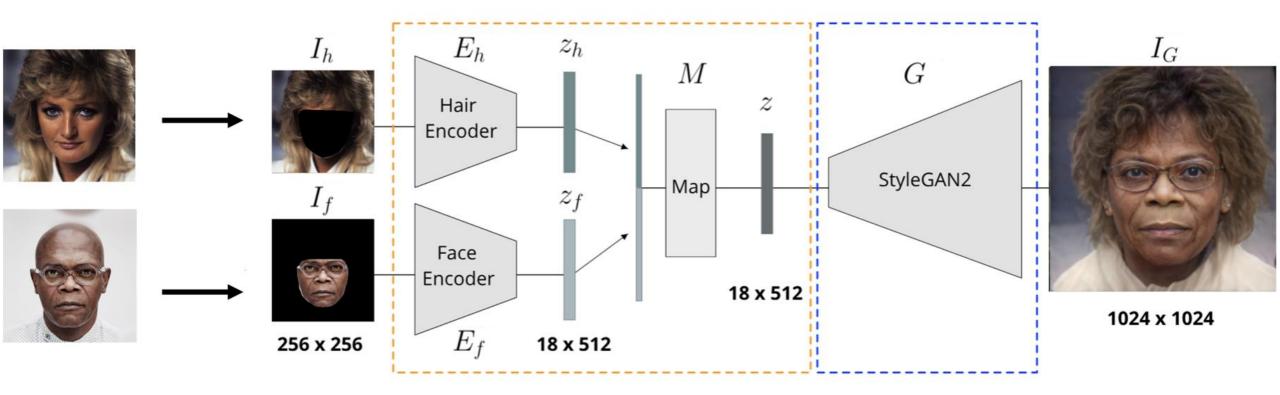


Improved Training



Experiments

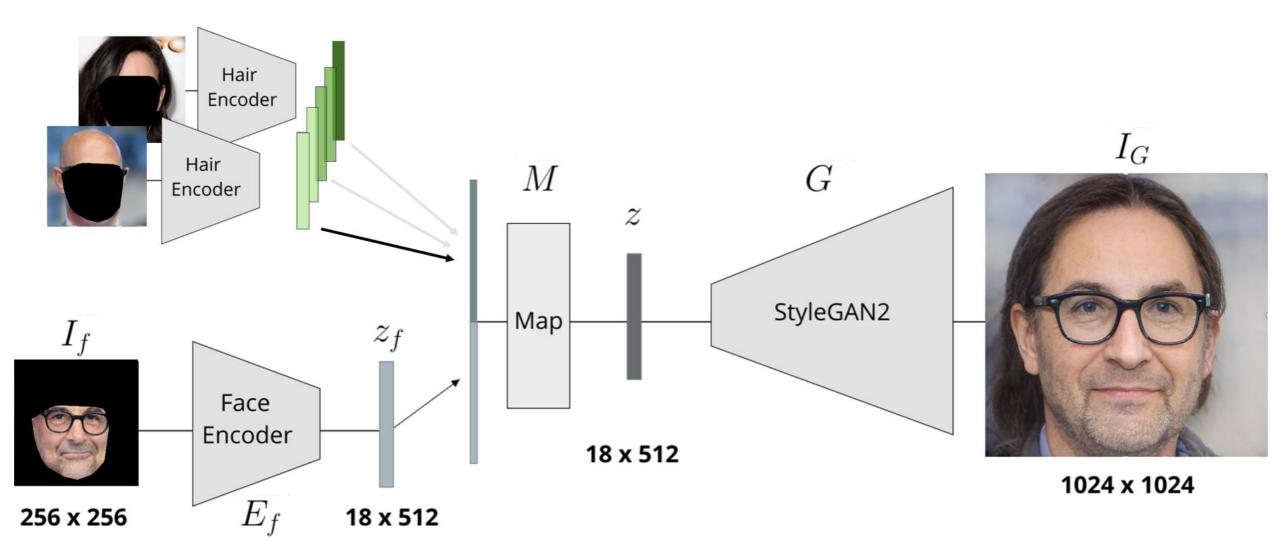
Hairstyle Transfer



Hairstyle Transfer

Hairstyle Transfer

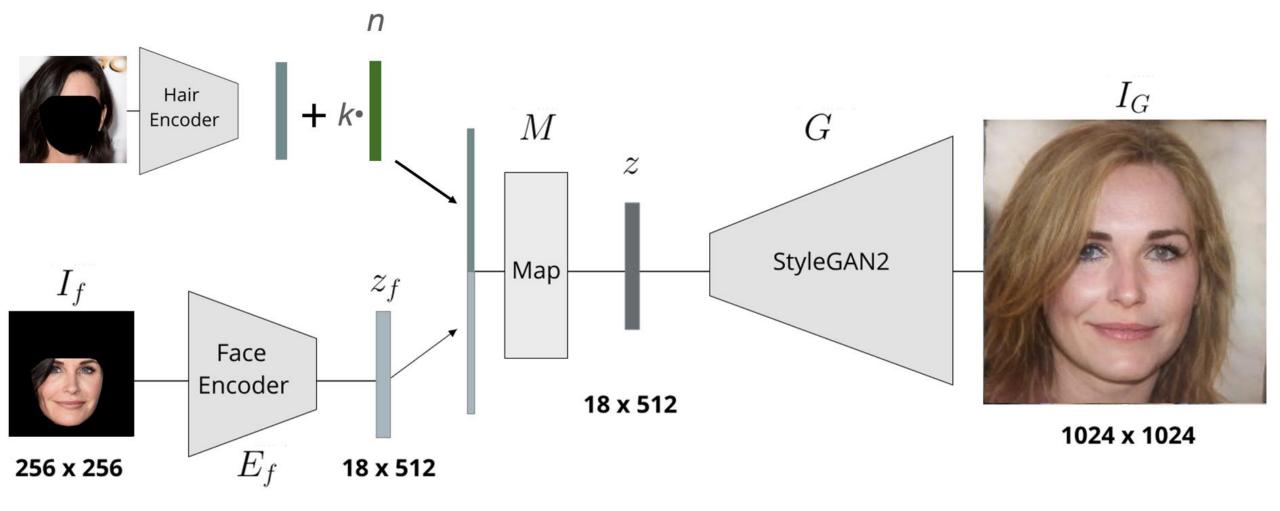
Interpolation



Interpolation

Hair Manipulation

• Same principle as in face rotation



Experiments - Quantitative

Identity preservation assesment

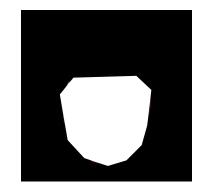
- 100k random images generated from StyleGAN
- Hairstyle transfer on random subset of 1k images
- Image retrieval on the full 100k dataset with the hairstyle-transfered images as a queries
- Ranking based on cosine similarity of ArcFace descriptors
- In 98.3% the first ranked was correct.
- Average rank was 1.143.

Limitations – Identity preservation on real images

Hair

Identity

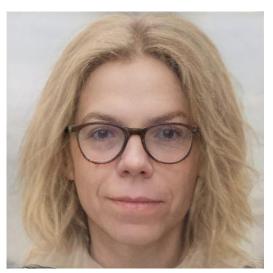
Generated



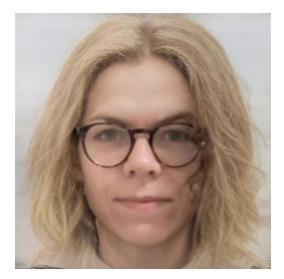
Limitations – Identity preservation on real images

Identity

Generated



Alpha-blended

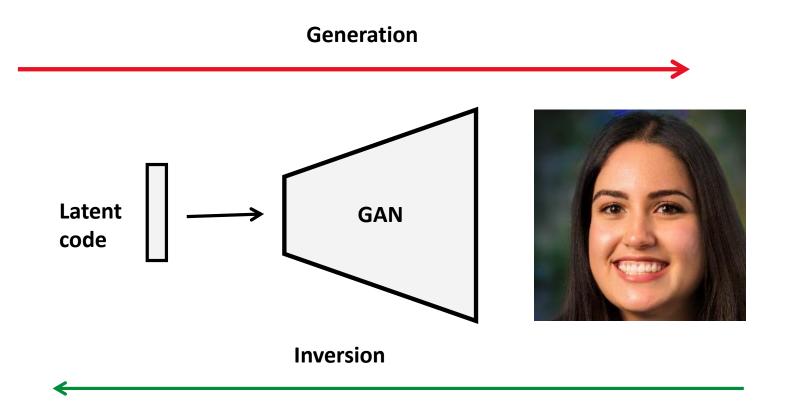


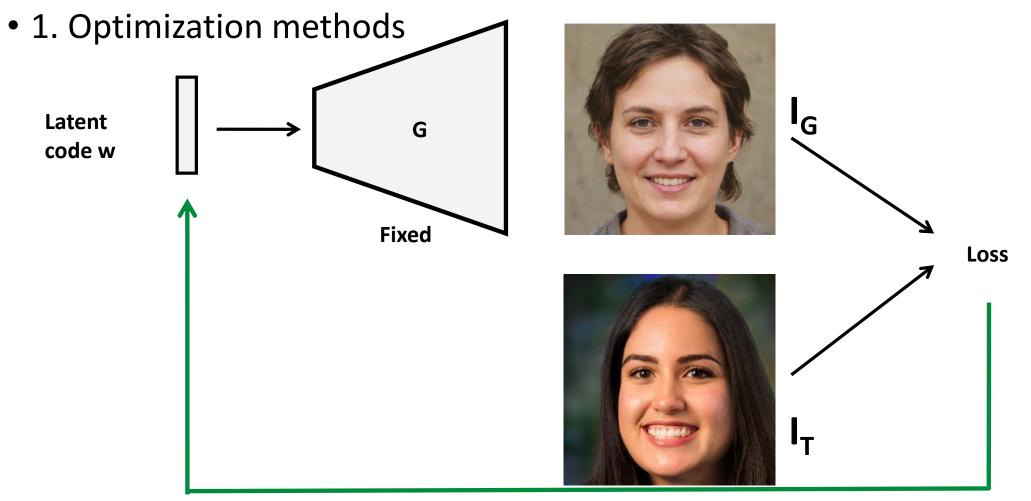
Project page with demo

ChunkyGAN: Real Image Inversion via Segments

A. Šubrtová, D. Futschik, J. Čech, M. Lukáč, E. Shechtman, D. Sýkora, ChunkyGAN: Real Image Inversion via Segments, In Proc. ECCV, 2022

Editing Real Images using GANs





Gradient descent

• 1. Optimization methods



 GD

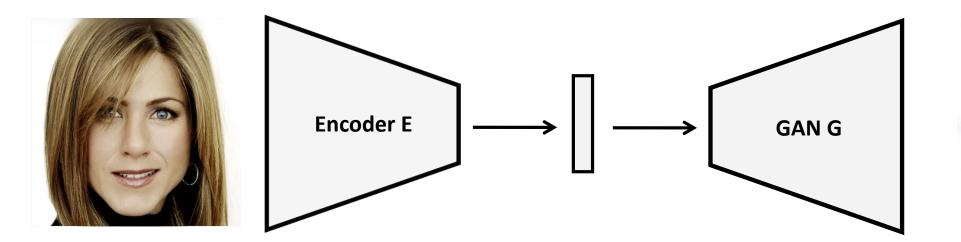
$$\widehat{w} = \operatorname*{argmin}_{w} \ell(IT, G(w))$$

l

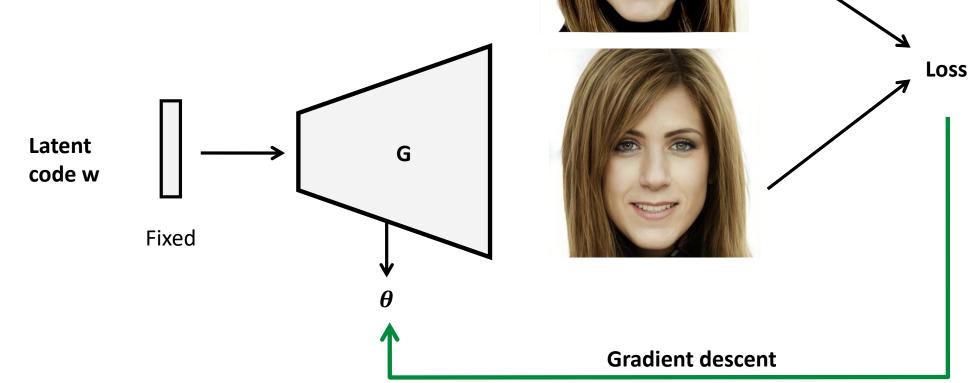
= combination of perceptual loss [1] and identity loss [2]

[1] Zhang et. al., The Unreasonable Effectiveness of Deep Features as a Perceptual Metric, CVPR, 2018[2] Deng et. al., ArcFace: Additive Angular Margin Loss for Deep Face Recognition, CVPR, 2019

• 2. Encoder-based methods



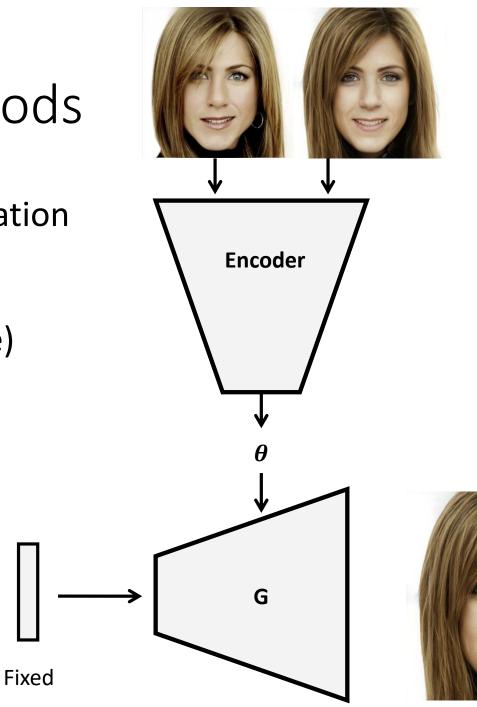
- 3. Generator parameter modification
 - Finetuning (Pivotal Tuning)



- 3. Generator parameter modification
 - Finetuning (Pivotal Tuning)
 - Hypernetworks (HyperStyle)

Latent

code w



Overview

Optimization

- + Accurate*
- Slower
- Poor editability

Encoders

+ Fast

- + Good editability
- Identity not well preserved

Generator modification

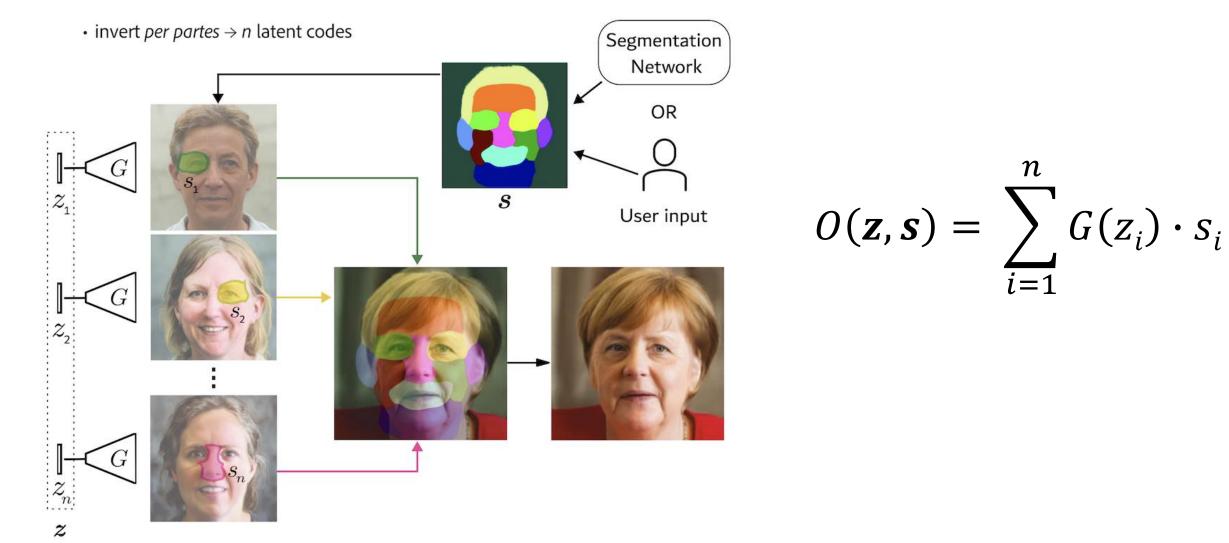
- + Accurate*
- + Good editability
- Need to store the weights

* For in-domain images

Shortcomings

• Hard/Impossible to reconstruct unusual features (face mask, bindi,...)

ChunkyGAN - Method



Optimalization

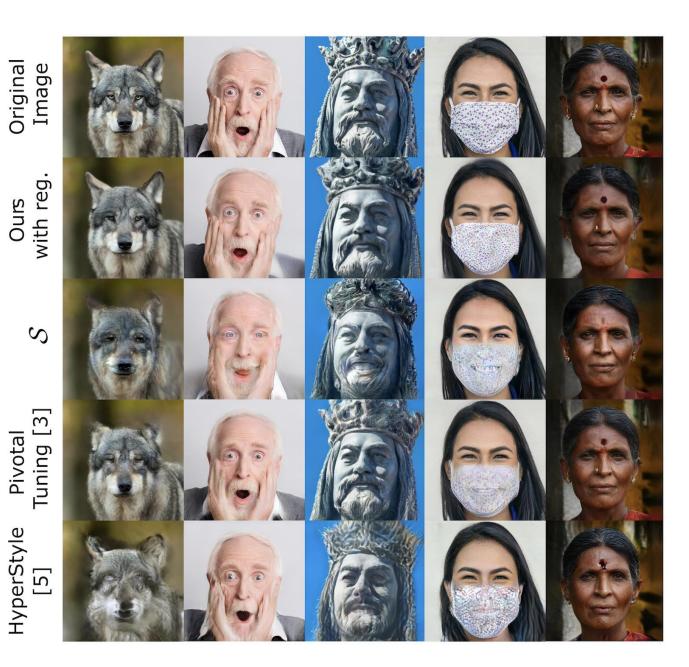
• Optimization problem:

$$\min_{\boldsymbol{z},\boldsymbol{s}} \mathcal{L}_{LPIPS}(I, \ O(\boldsymbol{z}, \boldsymbol{s})) + \lambda_{reg} \sum_{i=1}^{n} \| z_i - z_{\mu} \|^2$$

- Regularization \rightarrow latent codes lie close to the natural image manifold

Projection

Results – inversion



Inversion – difficult examples

Quantitative evaluation of projection

	Projection	LPIPS	Identity	L_2
Optimization	\mathcal{W}	0.4190 ± 0.0363	0.1745 ± 0.1328	0.0725 ± 0.0699
	Ours in ${\cal W}$	0.3697 ± 0.0396	0.1384 ± 0.1117	0.0481 ± 0.0289
	\mathcal{W}^+	0.3675 ± 0.0387	0.1195 ± 0.1047	0.0436 ± 0.0623
	Ours in \mathcal{W}^+	$\textbf{0.3194} \pm \textbf{0.0365}$	0.0937 ± 0.0855	0.0207 ± 0.0151
	Ours in \mathcal{W}^+ reg.	0.3330 ± 0.0350	$\textbf{0.0894} \pm \textbf{0.074}$	0.0217 ± 0.0130
	S	0.3577 ± 0.0397	0.1070 ± 0.0965	0.0328 ± 0.0188
	Ours in ${\cal S}$	0.3572 ± 0.0401	0.1053 ± 0.0928	0.0319 ± 0.0187
Encoders	e4e [9]	0.4444 ± 0.0418	0.1912 ± 0.1343	0.0468 ± 0.0165
	pSp [7]	0.4433 ± 0.0418	0.1706 ± 0.1182	0.0351 ± 0.0135
	ReStyle $[2]$ - 5 iters	0.4444 ± 0.0430	0.1900 ± 0.1318	0.0433 ± 0.0162
Generator	Pivotal Tuning [8]	0.3332 ± 0.0353	0.0936 ± 0.0616	$\textbf{0.0135} \pm \textbf{0.0071}$
parameters	HyperStyle [3] - 5 iters	0.4297 ± 0.0404	0.1420 ± 0.1003	0.0247 ± 0.0115
modification				

Regularization

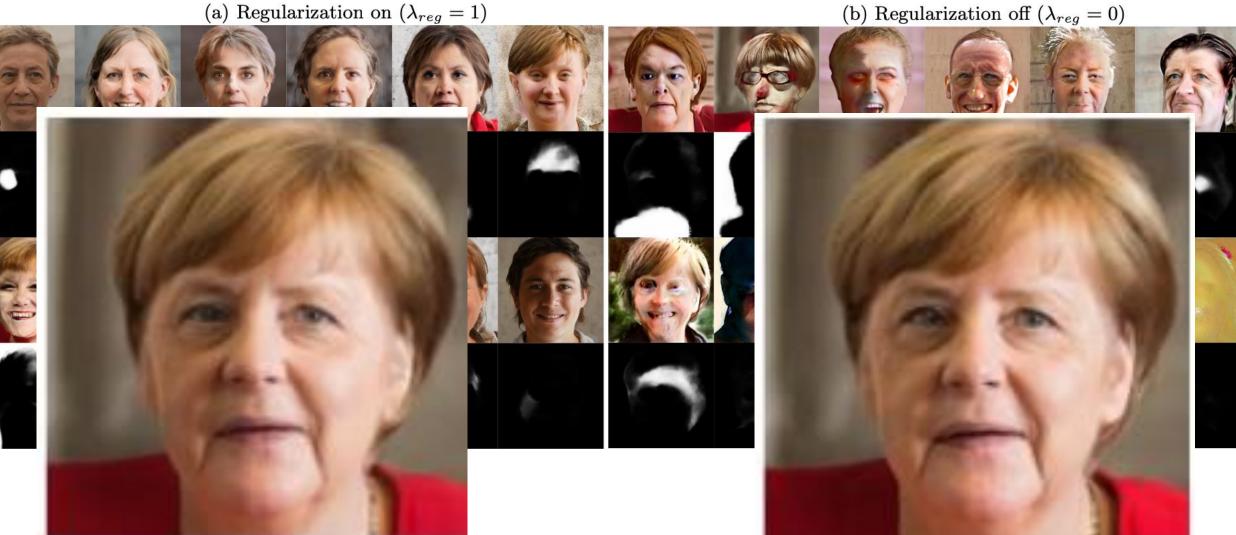
• Optimization problem:

$$\min_{\boldsymbol{z},\boldsymbol{s}} \mathcal{L}_{LPIPS}(I, O(\boldsymbol{z}, \boldsymbol{s})) + \left\{ \lambda_{reg} \sum_{i=1}^{n} \| z_i - z_{\mu} \|^2 \right\}$$

- Regularization \rightarrow latent codes lie close to the natural image manifold

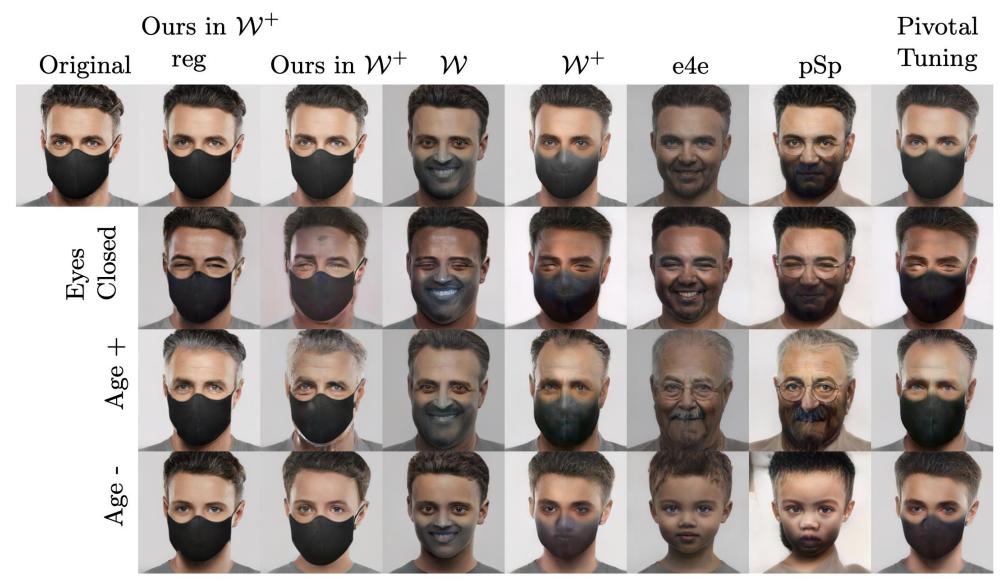
Effect of Regularization

(a) Regularization on $(\lambda_{reg} = 1)$



Editing

Results - Editing



Local editing – artist workflow

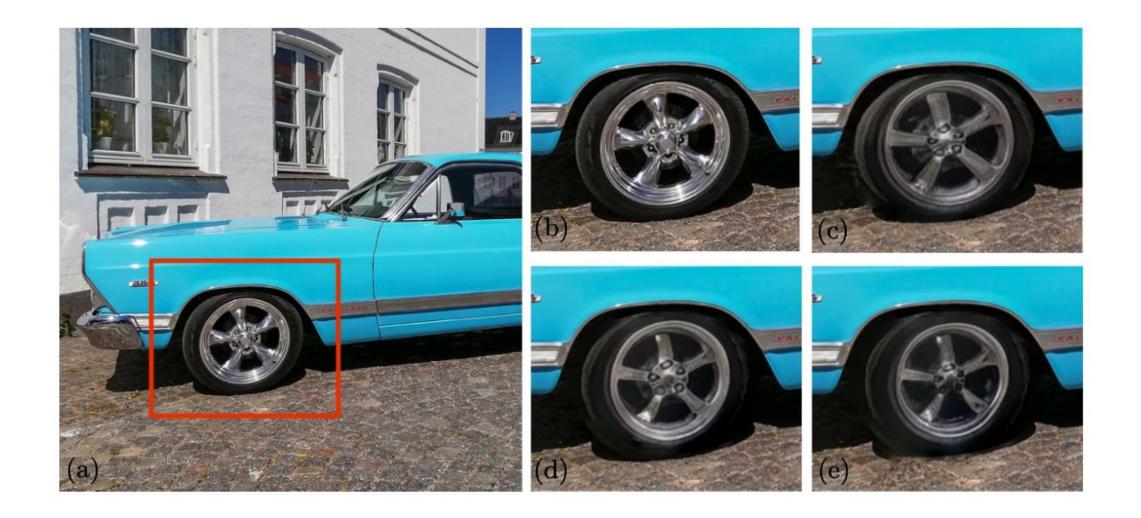
Identity Preservation after Edits

		(a)				(b)			
		gender	\mathbf{smile}	age	beard	gender	\mathbf{smile}	age	beard
Optimization	$\overline{\mathcal{W}}$	0.169	0.022	0.07	0.279	0.249	0.18	0.191	0.328
	\mathcal{W}^+	0.209	0.02	0.095	0.296	0.256	0.128	0.171	0.325
	Ours in \mathcal{W}^+	0.298	0.049	0.151	0.312	0.325	0.125	0.203	0.333
	Ours in \mathcal{W}^+ reg.	0.126	0.018	0.069	0.091	0.169	0.099	0.129	0.144
Encoders	e4e [9]	0.088	0.024	0.054	0.239	0.26	0.242	0.245	0.351
	pSp [7]	0.153	0.026	0.126	0.074	0.282	0.223	0.258	0.248
	ReStyle $[2]$ - 5 iters	0.097	0.030	0.081	0.213	0.417	0.409	0.399	0.453
Generator parameters modification	Pivotal Tuning [8]	0.135	0.037	0.089	0.329	0.237	0.176	0.200	0.388
	HyperStyle [3]- 5 iters	0.107	0.12	0.135	0.107	0.15	0.163	0.166	0.157

Reconstructed vs Edited

Input vs Edited

Also works for other domains



Limitations

Conclusion

- Semantic image editing using GANs
- Hairstyle Transfer between Face Images
 - Fully automatic method
 - Handles different illumination and pose
- ChunkyGAN: Real Image Inversion via Segments
 - Method for image modelling and editing using GANs
 - Works for images with unusual features (glasses, face masks, bindi, etc.)
- Future of GANs? -> Diffusion models

Questions & Demo

