SAT-based Multi-Agent Path Finding

an overview

PAVEL SURYNEK CVUT - CZECH TECHNICAL UNIVERSITY

FIT - FACULTY OF INFORMATION
TECHNOLOGY

PRAHA, CZECHIA

Background
in Multi Agent Path Finding

Multi-agent Path Finding (MAPF) Bver 200>

Problem components
> G=(V,E)
o agents placed in vertices
- A={a, a,, .., a,}, k< |V]
° at least one vertex empty
> at most one agent per vertex

Task
> initial placement of agents ! (v — u() @)v
° 0y AV
> move agents so that agents arrive to their goals Moving agent a; across edge

u,v}into empty v
> goal agent placement a,: A—>V {u,vi pty

Motivation

Navigation of multiple robots
° agent = robot

Container movement planning
° agent = container

Quantum program compilation
o qubit/quantum gate allocation

Robust scheduling/planning

o repair the schedule/plan by
swapping of activities

Economic Impact

KIVA agents/Amazon

= warehouse relocation
= bought by Amazon
S 775.000.000

Autonomous cars
= Google, Toyota, Tesla
= combines
autonomy
multi-agent path finding

Parking systems
= AVERT

= saves
space, time,
° energy, ...

Computer games o
= $ multi-billion market

Optimization — Makespan/Sum-of-costs

When time matters (makespan p)
o each more requires 1 unit of time

° all agents in goals at earliest time

When energy matters (sum-of-costs §)
> each move consumes 1 unit of energy

° the least energy consumed in total Optimal makespan

Sub-optimal sum-of-costs §

o oy O, O3 O O Og=0,
A F E D C B 6
7 2 3 4 5 9 8

a
b

Makespan and sum-of-costs optimization

Optimal sum-of-costs §*

o go against each other Sub-optimal makespan]
> both NP-hard alA 95 432158

Optimization - Complexity

Minimize cumulative costs such a the number of moves, cost, fuel, ...
o unit edges in the basic variant

o each move or wait action costs 1

o NP-hard problem [Ratner & Warmuth, 1986; Bonnet et al., 2016]
° inapproximable (APX-hard) [Mitzow et al., 2016]

Known bounds [Kornhauser et al., 1984; Yamanaka et al., 2016]
> any MAPF instance can be solved using O(|V|3) moves
o there are instance that need Q(|V|3) |)

Feasible solution (not requiring the minimum number of moves) | ;f”’ .?

° can be found in polynomial time
> O(|V]3) time and O(|V|3) moves

Solving MAPF

reduction to SAT

Overview of SAT-based Approaches

Improving sub-optimal solutions [2011]

° takes a solution generated by some polynomial time algorithm and improves it w.r.t.
given cumulative objective (makespan, sum-of-costs, fuel, ...)

° replaces sub-sequence of moves in the current solution with an optimal sub-sequence

SAT-Plan inspired approach [2014] ITime s | | | makespan |
0belingconfidentandgoingdirectlytooptimal EléBalsesolutionl'li|E|EI!
solution
o like replacing entire solution sequence "._SATsolving
ke replacing entire ~ 9/ /S
> we do not need the iterative process at all New solution ——1 i
; ; ' ' iteration@

Problem Decomposition / Independence Detection [2017] fmw?m S S ?w‘?wlmhwi
o planning for isolated groups of agents separately

Lazy Compilation + SMT [2019]

° using incomelete EroEositionaI encodings — do not encode all MAPF rules

Propositional Satisfiability (SAT)

= Propositional formula / satisfiability
= 3 formula F over 0/1 (false/true) variables (X V=y) A (=X V' y)
= |sthere an assighment under which F evaluates to 1/true? Satisfied forx=1,y = 1

= Benefits of reduction
= powerful propositional solvers
* decades of development
* MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
* intelligent search, learning, restarts, heuristics, ...

* and most recently
* machine learning for variable/value ordering
* MapleSAT (winner in recent SAT competitions)

= multi-agent path finding = formula F
* all these advanced techniques accessed almost for free

Reducing MAPF to SAT [Surynek, 2012]

MAPF instance — sequence of SAT instances
o F (&) satisfiable iff MAPF has a solution of cost §

o consult the SAT solver on F(&;), F(§,+1), F(,+2), ... until a satisfiable formula is met
> &, lower bound on the cost

o cumulative objectives in MAPF imply monotonicity of solvability
o unsolvable, unsolvable, unsolvable, solvable, solvable, ...

Ez Eo
Iterative Algorithm — MDD-SAT §§+1

° & sum of lengths of shortest paths

o first satisfiable F (&) corresponds to F(€)
the minimum cost Encoder) SAT
o satisfiability of F(£) is monotonic w.r.t. € solver —

Yes

[Surynek, Felner, Stern, Boyarski, 2016]

MAPF Encoding through Time Expansion

Time Expanded Graph (TEG) TEG for agent a, = TEG,
G=(V,E) =3 % %

TEG, for{=4

u

u

u

time step time step
0 1 2 0 1 2 3
o positions of all agents at all time-steps are represented in TEGs

o introduce a propositional variable for each node and each edge in TEGs
° a node variable is TRUE iff an agent occupies the vertex at the given time-step
° an edge variable is TRUE iff an agent makes move across the edge

Example of MAPF Rule Encoding

° Propositional variables for a; € A, v,u EV,t € {0,1,..., bound derived from the objective}
> Node variables

> X(a;),! TRUE iff agent a, occupies vertex v at time-step t
o Edge variables
° E(ay),,! TRUE iff agent a, starts traversal of edge (u,v) (starting in u) at time-step t

o Target vertex v of a movement of agent a, across (u,v) must be empty at time-step t

E(ai)u'vt = A

ajEAl aj=3; 1 X(aj)vt

o Implication a = (-b A —=c A =d...) can be written as a conjunction of multiple binary
clauses

o (~.aV-b)A(-aV-c)A(-aV-d)A..

Experimental Evaluation

n Setu p Solved instances

o i 0
= small 4-connected grids Grid ‘foz | 10% obstacles

* random initial and 200 1--
o goal arrangement 8 o
* dense occupation ~§ 200
= |large game maps 5
* Dragon Age — standard benchmark £ 100 .
) sparse occupation Solved instances : >0
- Comparison DeniZOOFI |32 agents | | 0 - : - o

Runtime (seconds)

= search-based algorithms
* previous state-of-the-art

* ICTS [Felner et al., 2013],
EPEA [Sharon et al., 2014],
ICBS [Sharon et al., 2014]

300

250 -

200 -

Number of instances
[
vl
o

100 -

= Results
= SAT-based approach
* better in hard setups Runtime (seconds)

50 -

Problem Decomposition [standiey, AAAI 2010]

Solve independent sub-problems separately
> Solving procedure of time complexity O(2N)

° N - the number of agents

Problem decomposition
> decompose into two independent sub-problems of size N/2

° solve sub-problems separately
> merge solutions of sub-problems

time(total) = time(decomposition) + 2 * O(2V/2) + time(merging) = O(N) + O(2V2*1) << O(2N)

In theory. What about practice?

Independence Detection

Dividing agents in groups
© Gl,GZ’G3’---

Gl GZ G3 G1 Gz G3
Plan for each group independently O o
> Time O(216il)
O Q
If two groups G, and G, collide o &
° Try to replan for G, g
o while avoid all other groups A 5
° or try to replan for G, A A L
o while avoid all other groups | 0 0
o if both fails time O O
> merge G, and G, 19552 s L5 3% c
Integration into SAT-based approach “TTTvertices”

> encode group avoidance in formulae

Experiments — small instances

4 - connected grids Algorithms
o Sizes 8x8, 16x16, 32x32 > MDD-SAT
> 10% obstacles o original SAT-based MAPF solver (Surynek et al., ECAI 2016)
o MDD-SAT+ID
Agents o with independent detection

> 1..20 (8x8), 1..40 (16x16), 1..60 (32x32) - ICTS, ICBS

o Increasing cost tree search — search based algorithms (Sharon et al., AlJ 2013)
Solved instances

Grid 8;((__,80| 10% obstacles Grid 16x16 | 10% obstacles Grid 32x32 | 10% obstacles
140 - 350 1
] »n
8 120 - g g 300
© < o
% 100 - 8 = 250 -
£ | | £ 7
B 80 T T e MIDD-SAT+ID s < 200 -
[e e o |
£ > 3 — MDD-SAT é | ~—MDD-SAT+D g > MDD-SAT+ID
e Jemmeem ! Qo an—— - +
2 40 ! | CBS 5 5o U e MIDD-SAT € 100 -
N L 2 i S e |CBS
20 : : e |CBS Z :
; —i | 50 | T
0 ; ; 0 # e—ICT5 | MDD-SAT
1 10 100 1 10 100 0 ' i
Runtime (seconds) Runtime (seconds) 1 10 100

Runtime (seconds)

Experiments — [arge instances

Big 4-connected grids
o Dragon Age game

ost003d den520d brc202d

o Size: .%}J:g
o 481x530 (brc202d), 257x256 (den520d), 194x194 (ost003d)

o 32 agents ,

Distance from goals 1..320

Ost003d|32 agents

250 - ‘ ‘ Den520d|32 agents
: ! 350 - ‘ ‘ Brc202d|32 agents
; 1 et ‘ ‘ 400 -
- 200 ‘ —— B e 250 ! ‘
S 8 @ |
© i R He e Y & o i Y 300 fo-mmmm e -
£ 150 - ! s - & c
c ‘ o 850 b T e
= L 200 fo-mmmmmmmee T g % 1
) b 5
= g i ‘s e 200 o g ST
8 100 po--mmmmmmooooooooo g S R el detettietetetete 5150 [g e °
£ e |CTS 2 [T S
2 : e |CBS Ewo g™ Af £
50 P z S 100 fpg® -
i @ VDD-SAT+ID MDD-SAT+ID 2 MDD-SAT+ID
50 f----gff - ff
e | DD-SAT MDD-SAT LU Y (Y e R MDD-SAT
0 " - 0 : 0 i ;
1 10 100 1 10 100 1 10 100

Runtime (seconds) Runtime (seconds) Runtime (seconds)

Conflict Based Search

Conflict-based Search (CBS) [Sharon et al., 2013]

o A* at the high level, nodes contain incomplete solutions
o considers collisions lazily

1.searches for individual shortest paths connecting
initial position oy(a;) with goal a,(a;) for each a
2. validates solution from the OPEN list w.r.t. MAPF rules
> a) vertex conflict (a;, a;, u, t)
° a;and a; both appear in u at time-step t

Sal:[1-51,B, C,G1
2-52,52,B,C,G2,

iConﬂicts: {}

Salif1-51,4.0,C, a1 Eelif1- 51,0051
2-82,B.C,G2

Eonﬂids: {1 J iConﬂicIs: { y

o

> add conflicts: a; cannot appear in u at t in one branch, a; cannot appear in u at t in the other branch
° b) edge conflict (a, cH {u,v,w}, t)
° @; traverses (u,v) at t but a; appearing in v at t traverses (v,u) (opposite direction) which is forbidden usually
> add conflicts: a; cannot traverse (u,v) at t or a; cannot traverse (v,u) at t

Introduce Constraints Lazily BPUmnek HCAI 2019]

SMT - Satisfiability Modulo Theory
o SAT Solver
> works on top of propositional skeleton — only decision variables (nodes X(a;),, edges E(a}), ,*)

v

° no understanding of MAPF rules

> DECIDE,ppf
o complete understanding of MAPF rules

No

° checks the assignment from the SAT solver SAT DECIDE
o returns conflict elimination constraints solver > MAPF > Solution
3
1

ul,

assignment Yes

1 1

SSINTO -

Experiments - small graphs

Various types of graphs
o 4-conneced grids

o Stars

o Paths

o Cliques

c Random graphs (50% edges)

Up to 16 agents

Results

° significant improvement from
previous SAT-based solving

o degeneration towards complete
formula in hard cases

Runtime | Grid 8x8

[E
= O
o O
o o

=
= O

0,1
0,01
0,001

Instance

Runtime (seconds)

0 40 80 120 160 200
===(CBS ==—=MDD-SAT ==SMT-CBS

Runtime | Clique (16)

[EEN
= O

= O O
= O OO

Runtime (seconds)

Instance

o
(@IS
o
=

0 20 40 60 80 100 120
===(CBS ===MDD-SAT ==SMT-CBS

Runtime | Random (16)
1000

100

=
= O

0,1
0,01
0,001

Instance

Runtime (seconds)

0 20 40 60 80 100
===(CBS ===MDD-SAT ===SMT-CBS

Runtime | Star (16)
1000

100

(seconds)

=
= O

Runtime
(@]
o
=

Instance

0 20 40 60 80
===(CBS ===MDD-SAT ===SMT-CBS

o
o <
o
=

Brc202d | MAPF
1000

100

[y
o

Runtime (seconds)
=

Experiments - large graphs

o
=

Big 4-connected grids 0,01
o Dragon Age game

o

100 200 300
Instance

° Size: Runtime Den520d
o 481x530 (brc202d), 257x256 (den520d), 194x194 (ost003d)

° up to 64 agents
Runtime Ost003d

Results

° lazy encoding helps much more in
large cases

o better chance that agents do not collide

0 100 200 300 400
Instance

= CBS
= MDD-SAT
=—=SMT-CBS

0 100 200 300
Instance

Conclusion

Not everything in SAT-based MAPF has been covered
o finding suboptimal solutions using SAT
o various encodings of constraints
o Boolean circuits for calculating objectives
o |og-space representation of decision variables

Variants of MAPF
o multiple agents per vertex

o adversarial MAPF

o multiple teams of agents compete

o

Further reading
o web site: mapf.info [Koenig, 2019]
o community is growing around MAPF

o MAPF session and workshoE at IJCAI 2019

Future Work: .
Continuous MAPF

MAPFR
o environment G=(V,E)
each vertex has a position

o agents A={a,a,,..,a,}

o each circular agent has e ’
° constant velocity ‘)@ @'
g ' —
°© lameter
Movements @
> agents move along straight lines connecting vertices

o agents’ bodies must not overlap

@?\
Methods — SAT again (SMT more precisely) v

> not only lazy constraint generation but also
lazy decision variable generation

o o,

conflict

Thank you

