Can we certify adversarial robustness for classifiers learning high dimensional data?

Oliver Sutton

Department of Mathematics King's College London

with I. Tyukin (King's College London),
Q. Zhou (King's College London),
A. Gorban (University of Leicester)
A. Bastounis (University of Leicester)
D. Higham (University of Edinburgh)

The **Alan Turing** Institute

aeroplane

Oliver Sutton (oliver.sutton@kcl.ac.uk)

Adversarial robustness

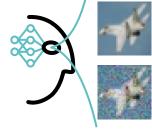
accuracy 99.9%!

aeroplane

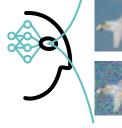
Oliver Sutton (oliver.sutton@kcl.ac.uk)

Adversarial robustness

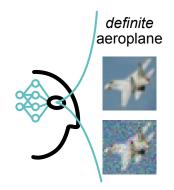
definite aeroplane



definite aeroplane



definite cat

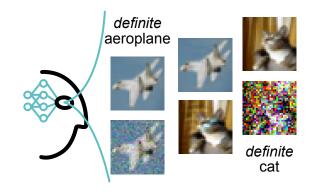


definite cat

Stable classifier

The classifier is robust to even very noisy inputs

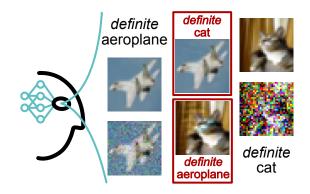
- 2000 random perturbations
 - ▶ Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
 - ► Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification



Stable classifier

The classifier is robust to even very noisy inputs

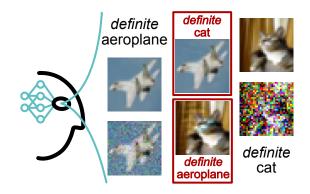
- 2000 random perturbations
 - ▶ Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
 - ► Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification



Stable classifier

The classifier is robust to even very noisy inputs

- 2000 random perturbations
 - ▶ Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
 - ► Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification

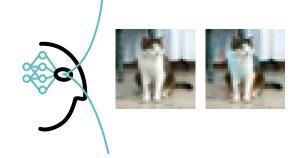


Stable classifier

The classifier is robust to even very noisy inputs

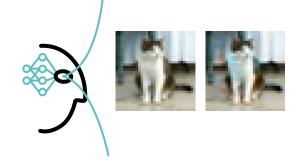
- 2000 random perturbations
 - ▶ Plane (with max pixel change 0.3): 4 (0.2%) caused misclassification
 - Cat (with max pixel change 1.6): 83 (4.15%) caused misclassification

...so what happened here?!?!



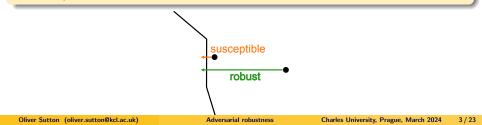
Adversarial attacks¹

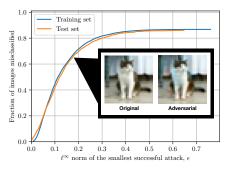
A small modification to an input which causes a classifier to confidently misclassify it



Adversarial attacks¹

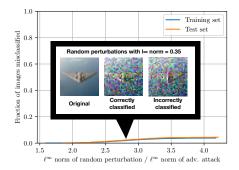
A *small* modification to an input which causes a classifier to confidently misclassify it





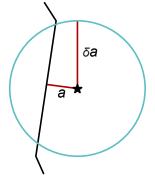
Misclassified after adversarial attack

Misclassified after any of 2000 random noise samples

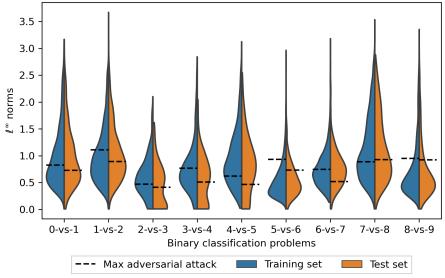


	CIFAR-10	Fashion MNIST	GTSRB
Accuracy	99.70, 95.80	99.51, 99.4	98.32, 98.51
Adversarial attack susceptibility	91.88, 89.96	53.58, 53.01	77.53, 77.00
Random attack susceptibility ($\delta=2$)	0.02, 0.17	0.07, 0.09	0.36, 0.36
Random attack susceptibility ($\delta = 5$)	2.65, 2.57	10.71, 13.35	5.76, 5.1
Input dimension	$32 \times 32 \times 3$	28 imes28 imes1	$30 \times 30 \times 3$
Number of classes	10	10	6

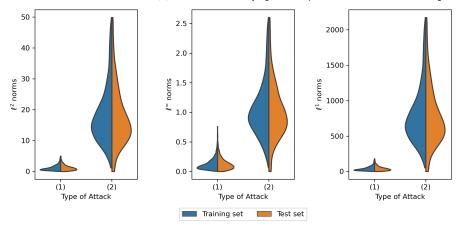
- CNNs trained for each binary classification problem in each benchmark
- Reporting are medians over all problems (train, test)
- Adversarial attack susceptibility: fraction of correctly classified images susceptible to an adversarial attack
- Random attack susceptibility: fraction of adversarially susceptible images which were misclassified after any of 2000 random perturbations sampled uniformly from a ball with radius δ times larger than the smallest adversarial attack found on that image



Violin plots showing the distribution across the training and test sets of the ℓ^{∞} norms of the smallest misclassifying random perturbation on individual images.



Violin plots showing the distribution across the training and test sets of the norms of (1) smallest successful adversarial attacks, and (2) smallest misclassifying random perturbation on individual images.



Seemingly stable classifier (probabilistic stability)

Even large random noise is unlikely to cause an input to be misclassified

Susceptible to adversarial attacks (deterministic instability)

A *small* modification can be made to most inputs which causes a classifier to confidently misclassify them

Seemingly stable classifier (probabilistic stability)

Even large random noise is unlikely to cause an input to be misclassified

Susceptible to adversarial attacks (deterministic instability)

A *small* modification can be made to most inputs which causes a classifier to confidently misclassify them

Probabilistic stability does not prevent deterministic instability!

Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen¹ Elan Rosenfeld¹ J. Zico Kolter¹²

(PMLR 2019)

Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen¹ Elan Rosenfeld¹ J. Zico Kolter¹²

(PMLR 2019)

Certified Adversarial Robustness with Additive Noise

Bai Li Department of Statistical Science Duke University bai.li@duke.edu

> Wenlin Wang Department of ECE Duke University wenlin.wang@duke.edu

Changyou Chen Department of CSE University at Buffalo, SUNY cchangyou@gmail.com

> Lawrence Carin Department of ECE Duke University lcarin@duke.edu

> > (NeurIPS 2019)

Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen¹ Elan Rosenfeld¹ J. Zico Kolter¹²

(PMLR 2019)

Certified Adversarial Robustness with Additive Noise

Bai Li Department of Statistical Science Duke University bai.li@duke.edu

> Wenlin Wang Department of ECE Duke University wenlin.wang@duke.edu

Changyou Chen Department of CSE University at Buffalo, SUNY cchangyou@gmail.com

Lawrence Carin Department of ECE Duke University lcarin@duke.edu

(NeurIPS 2019)

UniT: A Unified Look at Certified Robust Training against Text Adversarial Perturbation

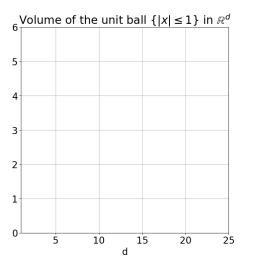
Muchao Ye¹ Ziyi Yin¹ Tianrong Zhang¹ Tianyu Du² Jinghui Chen¹ Ting Wang³ Fenglong Ma¹⁺ ¹The Pennsylvania State University, ²Zhejiang University, ³Stony Brook University

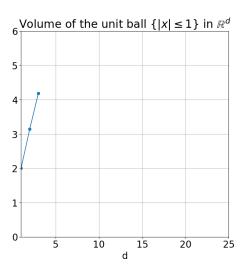
(NeurIPS 2023)

Oliver Sutton (oliver.sutton@kcl.ac.uk)

Adversarial robustness

Charles University, Prague, March 2024 9 / 23

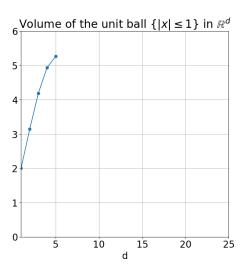




 $V_1 = 2$

$$V_{2} = \pi$$

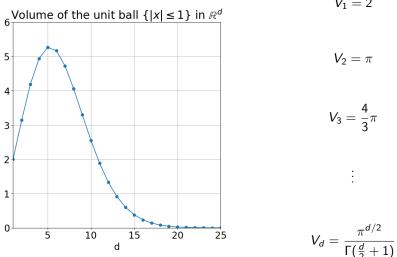
$$V_3 = \frac{4}{3}\pi$$

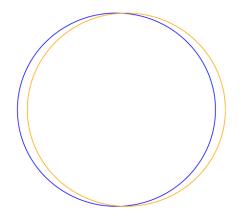


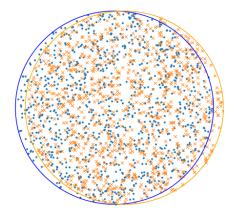
 $V_1 = 2$

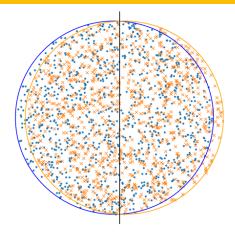
$$V_2 = \pi$$

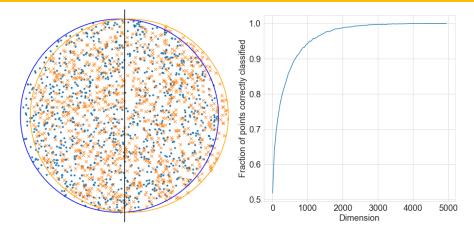
$$V_3 = \frac{4}{3}\tau$$

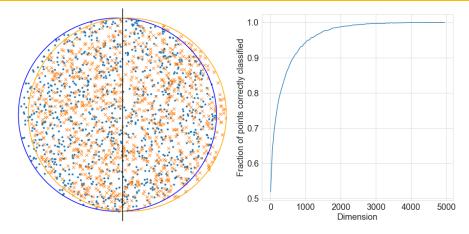












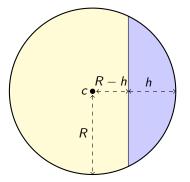
MNIST: 784 dimensions

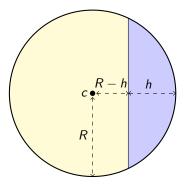
CIFAR-10: 3,072 dimensions

Llama-2: 4,096 dimensions

GPT3-Davinci: 12,288 dimensions

ImageNet: 196 608 dimensions Adversarial robustness





$$\frac{V_d^{\text{cap}}(R,h)}{V_d^{\text{ball}}(R)} \leq \frac{1}{2} \left(\underbrace{1 - \left(1 - \frac{h}{R}\right)^2}_{<1}\right)^{\frac{d}{2}}$$
$$\approx \exp\left(-f\left(\frac{h}{R}\right)d\right)$$

$\label{eq:concentration} \textbf{Concentration of measure}^2$

▶ Let x be sampled uniformly from the unit ball in \mathbb{R}^d . Then, for $0 \le r \le 1$

 $P(\|x\| > r) \ge 1 - r^d$

²Ledoux (2001), Ball (1997), ...
 ³Kainen and Kůrková (1993), Gorban, Tyukin, Prokhorov, Sofeikov (2016), ...

Oliver Sutton (oliver.sutton@kcl.ac.uk)

Adversarial robustness

Concentration of measure²

• Let x be sampled uniformly from the unit ball in \mathbb{R}^d . Then, for $0 \le r \le 1$

$$P(\|x\|>r)\geq 1-r^d$$

Quasi-orthogonality³

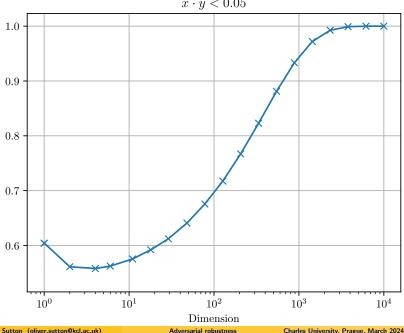
- In high dimensional spaces, randomly sampled points are typically nearly orthogonal
- For any ε > 0 the number of points x_i ∈ S^{d-1} ⊂ ℝ^d such that |(x_i, x_j)| ≤ ε for all i ≠ j grows exponentially with d
- For points x, y sampled independently and uniformly on the sphere in \mathbb{R}^d ,

$$P(|(x,y)| < \epsilon) \ge 1 - \exp\left(-\frac{d\epsilon^2}{2}\right)$$

See notes: Ball (1997) 'An elementary introduction to modern convex geometry' for an introduction to high dimensional geometry

- ²Ledoux (2001), Ball (1997), ...
- ³Kainen and Kůrková (1993), Gorban, Tyukin, Prokhorov, Sofeikov (2016), ...

Oliver Sutton (oliver.sutton@kcl.ac.uk)

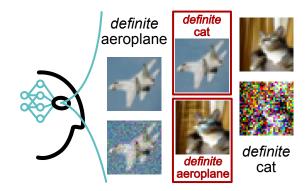


Probability of a pair of points sampled from $\mathcal{U}(B_d)$ satisfying $x \cdot y < 0.05$

Oliver Sutton (oliver.sutton@kcl.ac.uk)

Charles University, Prague, March 2024 14/23

Explaining the paradox [S. et al. (2023) arXiv:2309.03665]

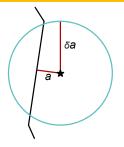


Paradox of apparent stability

Even large random noise is unlikely to cause an input to be misclassified

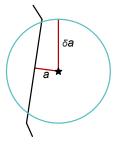
Most inputs can be misclassified by adding a small computed attack

Explaining the paradox [S. et al. (2023) arXiv:2309.03665]



- adversarial attack walks straight to decision boundary
- adding random noise samples another point in this ball
- misclassified points are those from a spherical cap
- relative volume of a spherical cap is small in high dimensions

Explaining the paradox [S. et al. (2023) arXiv:2309.03665]



- adversarial attack walks straight to decision boundary
 adding random noise samples another point in this ball
 misclassified points are those from a spherical cap
 relative volume of a spherical cap is small in high
- relative volume of a spherical cap is small in high dimensions

Theorem (Random noise is a bad way to detect adversarial attacks)

Let $f : \mathbb{R}^d \to \{0,1\}$ be a linear classifier, let $x \in \mathbb{R}^d$ with f(x) = 0, and let

$$a = \inf_{v \in \mathbb{R}^d \text{ such that } f(x+v)=1} \|v\|.$$

Then, for any $\delta > 1$,

$$P(s \sim \mathcal{U}(\mathbb{B}^d_{\delta a}) : f(x+s) \neq f(x)) \leq rac{1}{2} \Big(1 - rac{1}{\delta^2}\Big)^{rac{d}{2}}.$$

Oliver Sutton (oliver.sutton@kcl.ac.uk)

Building up the model [S. et al. (2023) arXiv:2309.03665]

- Data sampled in dimension d
- ▶ Balls B_0 and B_1 , unit radius, centres 2ϵ apart
- Points of class 0 sampled from distribution D₀ supported in B₀
- Points of class 1 sampled from distribution D₁ supported in B₁
- Distributions D₀ and D₁ don't have pathological accumulation points
 - ► they have densities p₀ and p₁ which are bounded⁴: there exists A ≥ 1 such that

$$p_i(x) \leq rac{A}{V^d(B_i)} \quad ext{ for all } x \in B_i$$

Combined distribution D_ε samples labelled point (x, ℓ) ∈ ℝ^d × {0, 1}; each label has probability ¹/₂

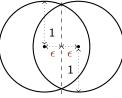
f is the optimal (balanced) classifier for this

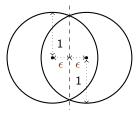
⁴A simplified version of the Smeard Absolute Continuity (SmAC) condition: [Gorban et al. (2018) Information Sciences]

Oliver Sutton (oliver.sutton@kcl.ac.uk)

Adversarial robustness

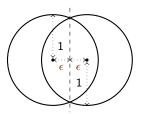
decision surface of f





decision surface of f

- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- Centre distance: 2ϵ
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- Combined distribution D_ϵ samples (x, ℓ); each label has probability ¹/₂



decision surface of f

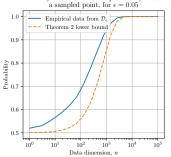
- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- Centre distance: 2e
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

Theorem (The classifier is accurate)

For any $\epsilon > 0$, the probability that the classifier applies the correct label to a randomly sampled data point grows exponentially to 1 with dimension n, specifically

$$P((x,\ell) \sim \mathcal{D}_{\epsilon}: f(x) = \ell) \geq 1 - \frac{1}{2}A(1-\epsilon^2)^{\frac{d}{2}}.$$

The model predicts the observations [S. et al. (2023) arXiv:2309.03665]

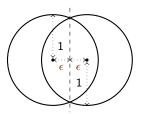


Probability that the classifier f correctly classifies

Theorem (The classifier is accurate)

For any $\epsilon > 0$, the probability that the classifier applies the correct label to a randomly sampled data point grows exponentially to 1 with dimension n, specifically

$$\mathsf{P}((x,\ell)\sim \mathcal{D}_\epsilon:f(x)=\ell)\geq 1-rac{1}{2}\mathsf{A}(1-\epsilon^2)^{rac{d}{2}}.$$



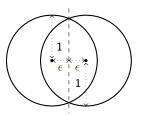
decision surface of f

- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- Centre distance: 2e
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

Theorem (The classifier is accurate)

For any $\epsilon > 0$, the probability that the classifier applies the correct label to a randomly sampled data point grows exponentially to 1 with dimension n, specifically

$$P((x,\ell) \sim \mathcal{D}_{\epsilon}: f(x) = \ell) \geq 1 - \frac{1}{2}A(1-\epsilon^2)^{\frac{d}{2}}.$$



decision surface of f

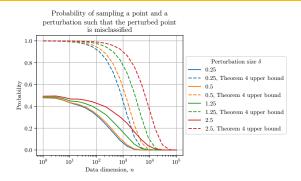
- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- ► Centre distance: 2ϵ
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

Theorem (Destabilising perturbations are rare)

For any fixed $\delta > \epsilon \ge 0$, the probability that a randomly selected perturbation with Euclidean norm δ causes a randomly sampled data point to be misclassified converges exponentially to 0 with the dimension d, specifically

$${\mathcal P}ig((x,\ell)\sim {\mathcal D}_\epsilon, s\sim {\mathcal U}({\mathbb B}^d{}_\delta): f(x+s)
eq \ellig) \leq {\mathcal A}\Big(1-\Big(rac{\epsilon}{1+\delta}\Big)^2\Big)^{rac{d}{2}}.$$

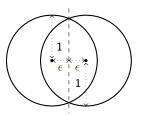
The model predicts the observations [S. et al. (2023) arXiv:2309.03665]



Theorem (Destabilising perturbations are rare)

For any fixed $\delta > \epsilon \ge 0$, the probability that a randomly selected perturbation with Euclidean norm δ causes a randomly sampled data point to be misclassified converges exponentially to 0 with the dimension d, specifically

$$P((x,\ell) \sim \mathcal{D}_{\epsilon}, s \sim \mathcal{U}(\mathbb{B}^{d}_{\delta}) : f(x+s) \neq \ell) \leq A\left(1 - \left(\frac{\epsilon}{1+\delta}\right)^{2}\right)^{\frac{d}{2}}.$$



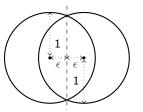
decision surface of f

- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- ► Centre distance: 2ϵ
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

Theorem (Destabilising perturbations are rare)

For any fixed $\delta > \epsilon \ge 0$, the probability that a randomly selected perturbation with Euclidean norm δ causes a randomly sampled data point to be misclassified converges exponentially to 0 with the dimension d, specifically

$${\mathcal P}ig((x,\ell)\sim {\mathcal D}_\epsilon, s\sim {\mathcal U}({\mathbb B}^d{}_\delta): f(x+s)
eq \ellig) \leq {\mathcal A}\Big(1-\Big(rac{\epsilon}{1+\delta}\Big)^2\Big)^{rac{d}{2}}.$$



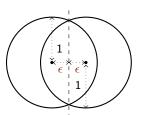
decision surface of f

- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- Centre distance: 2e
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- ► Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

Theorem (Susceptible data points are typical)

For any $\epsilon \geq 0$ and $\delta \in [\epsilon, 1 + \epsilon]$, the probability that a randomly sampled data point is susceptible to an adversarial attack with Euclidean norm δ grows exponentially to 1 with the dimension d, specifically

$$egin{aligned} & \mathcal{D}_{\epsilon}: \textit{there exists } s \in \mathbb{B}^{d}_{\delta} \textit{ such that } f(x+s)
eq \ell ig) \ & \geq 1 - rac{1}{2} \mathcal{A} (1 - (\delta - \epsilon)^{2})^{rac{d}{2}}. \end{aligned}$$



decision surface of f

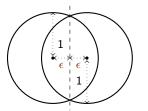
- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- Centre distance: 2e

• Bounded densities:
$$A \in \mathbb{R}$$
 s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$

► Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

Theorem (Gradient-based methods find the optimal adversarial attack)

Let $L : \mathbb{R}_{>0} \to \mathbb{R}$ denote any differentiable, monotonically increasing loss function, and let $(x, \ell) \sim \mathcal{D}_{\epsilon}$. Then, with probability 1 with respect to the sample (x, ℓ) , the gradient of the loss $L(|\tilde{f}(x) - \ell|)$ with respect to the components of x corresponds to a positive multiple of the optimal attack direction.



- Class *i* sampled from distribution D_i in $B_i \subset \mathbb{R}^d$
- ► Centre distance: 2ϵ
- ▶ Bounded densities: $A \in \mathbb{R}$ s.t. $p_i(x) \leq \frac{A}{V^d(B_i)}$
- Combined distribution D_e samples (x, ℓ); each label has probability ¹/₂

decision surface of f

Let $d_{\ell}(x)$ measure how far x is on the wrong side of the decision boundary for class ℓ .

Theorem (Adversarial attacks are universal)

Let $\epsilon \geq 0$ and suppose that $x, z \sim D_{\ell}$ are independently sampled with the same label ℓ . For any $\gamma \in (0, 1]$, the probability that x is destabilised by all perturbations $s \in \mathbb{R}^d$ which destabilise z with margin $d_{\ell}(z + s) > \gamma$ converges exponentially to 1 with d. Specifically, let $S_z = \{s \in \mathbb{R}^d : d_{\ell}(z + s) > \gamma\}$. Then,

$$P(x, z \sim \mathcal{D}_{\ell} : f(x + s) \neq \ell \text{ for all } s \in \frac{S_z}{2}) \ge \left(1 - A\left(1 - \frac{\gamma^2}{4}\right)^{\frac{d}{2}}\right)^2$$

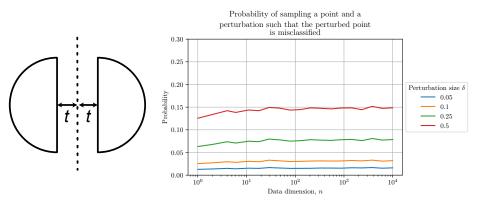
In summary, in high dimensions:

- ► The classifier is **accurate**
- Destabilising random perturbations are rare
- Typical data points sampled from either class are susceptible to small adversarial attacks which can be easily constructed and which universally affect most points from the same class

Extensions discussed in the paper:

- General data distributions
- Non-flat decision surfaces
- Multi-class setting

Coda: Classification with no margin



 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

1 There exists a network which correctly classifies the training data T and the test data V, satisfying

$$f \in \arg\min_{arphi \in \mathcal{NN}} \sum_{(x,\ell) \in \mathcal{T} \cup \mathcal{V}} \mathcal{L}(x,\ell;f)$$

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

1 There exists a network which correctly classifies the training data T and the test data V, satisfying

$$f \in \arg\min_{\varphi \in \mathcal{NN}} \sum_{(x,\ell) \in \mathcal{T} \cup \mathcal{V}} \mathcal{L}(x,\ell;f)$$

2 Yet, for any $q \in (0, 1/2)$, with probability greater than or equal to $1 - \exp(-2q^2M)$ there exists a multi-set $\mathcal{U} \subset \mathcal{T} \cup \mathcal{V}$ of cardinality at least $\lfloor (1/2 - q)M \rfloor$ on which f is unstable in the sense that for any $(x, \ell) \in \mathcal{U}$ and any $\alpha \in (0, \varepsilon/2)$, there exists a perturbation $\zeta \in \mathbb{R}^n$ with $\|\zeta\| \le \alpha/\sqrt{n}$ and

$$|f(x)-f(x+\zeta)|=1.$$

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 ${\cal F}$: family of 2-class data distributions, margin at least $\delta>0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

3 Moreover, such destabilising perturbations are typical in the sense that if vectors ζ are sampled from the equidistribution in $\mathbb{B}_n(\alpha/\sqrt{n}, 0)$, then for $(x, \ell) \in \mathcal{U}$

$$|f(x) - f(x + \zeta)| = 1$$
 with probability at least $1 - \frac{1}{2^n}$.

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

3 Moreover, such destabilising perturbations are typical in the sense that if vectors ζ are sampled from the equidistribution in $\mathbb{B}_n(\alpha/\sqrt{n}, 0)$, then for $(x, \ell) \in \mathcal{U}$

$$|f(x) - f(x + \zeta)| = 1$$
 with probability at least $1 - \frac{1}{2n}$

4 Furthermore, there exist universal destabilising perturbations, in the sense that a single perturbation ζ drawn from the equidistribution in $\mathbb{B}_n(\alpha/\sqrt{n}, 0)$ destabilises $m \leq |\mathcal{U}|$ points from the set \mathcal{U} with probability at least

$$1 - \frac{m}{2^n}$$

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

5 For the same distribution D_{δ} there is a robust network with the same architecture as f, satisfying

$$ilde{f} \in rg\min_{arphi \in \mathcal{NN}_{\mathsf{N},L}} \mathcal{L}(\mathcal{T} \cup \mathcal{V}, arphi)$$

with $\mathcal{L}(\mathcal{T} \cup \mathcal{V}, \tilde{f}) = 0$, which is robust in the sense that for all $(x, \ell) \in \mathcal{T} \cup \mathcal{V}$

$$\tilde{f}(x) = \tilde{f}(x+\zeta)$$

for any $\zeta \in \mathbb{R}^n$ with $\|\zeta\| \le \alpha/\sqrt{n}$, even when $|\mathcal{T} \cup \mathcal{V}| = \infty$.

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \ge 2$ layers, ReLU activations inside, step function for binary classification on output. \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes. \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

6 Moreover, there exist pairs of unstable and robust networks, f_{λ} , \tilde{f}_{λ} and f_{Λ} , \tilde{f}_{Λ} , satisfying the statements above such that the maximum absolute difference between their weights and biases is either arbitrarily small or arbitrarily large. That is, for any $\lambda > 0$, $\Lambda > 0$:

$$\|\Theta(f_{\lambda}) - \Theta(\tilde{f}_{\lambda})\|_{\infty} < \lambda, \ \|\Theta(f_{\Lambda}) - \Theta(\tilde{f}_{\Lambda})\|_{\infty} > \Lambda.$$

 \mathcal{NN} : networks with input dimension d, first hidden layer has 2d neurons, $L \geq 2$ layers, ReLU activations inside, step function for binary classification on output.

 \mathcal{F} : family of 2-class data distributions, margin at least $\delta > 0$ between opposite classes.

 \mathcal{L} : loss function \mathcal{T} : training data \mathcal{V} : test data $M = |\mathcal{T} \cup \mathcal{V}|$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

7 However, for the above robust solution \tilde{f} ,

- a) there exists an uncountably large family of distributions $\tilde{D}_{\delta} \in \mathcal{F}$ on which \tilde{f} correctly classifies both the training and test data, yet fails in the same way
- b) there exists an uncountably large family of distributions $\hat{D}_{\delta} \in \mathcal{F}$ such that the map \tilde{f} is robust on $\mathcal{T} \cup \mathcal{V}$ (with respect to perturbations ζ with $\|\zeta\| \leq \alpha/\sqrt{n}$, $\alpha \in (0, \varepsilon/2)$) with probability

$$\left(1-rac{1}{2^{n+1}}
ight)^{Mk}$$

but is unstable to arbitrarily small perturbations on future samples with probability $k/2^{n+1}$.

Oliver Sutton (oliver.sutton@kcl.ac.uk)

 $\begin{array}{ll} \mathcal{NN}: \mbox{ networks with input dimension } d, \mbox{ first hidden layer has } 2d \mbox{ neurons, } L \geq 2 \mbox{ layers,} \\ \mbox{ ReLU activations inside, step function for binary classification on output.} \\ \mathcal{F}: \mbox{ family of 2-class data distributions, margin at least } \delta > 0 \mbox{ between opposite classes.} \\ \mathcal{L}: \mbox{ loss function } \mathcal{T}: \mbox{ training data } \mathcal{V}: \mbox{ test data } M = |\mathcal{T} \cup \mathcal{V}| \end{array}$

Theorem (Inevitability, typicality and undetectability of instability)

Let $\varepsilon \in (0, \sqrt{d} - 1)$ and fix $0 < \delta \le \varepsilon/\sqrt{d}$. Then, there is an uncountably large family of distributions $\mathcal{D}_{\delta} \in \mathcal{F}$ such that for any $\mathcal{D}_{\delta} \in \mathcal{F}$, any training and validation data \mathcal{T}, \mathcal{V} drawn independently from \mathcal{D}_{δ} :

- 1. A network perfectly classifies the data, and minimises the loss
- 2. The training/test points are susceptible to small adversarial attacks
- 3. Nearly half the training/test points are susceptible to small adversarial attacks

- Stability to random perturbations is not the same as stability to adversarial perturbations!
- In high dimensions, the two are very different

Temporary page!

If you rerun the document (without altering it) this surplus page will g because $\[Mathebase]$ now knows how many pages to expect for this document