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Presentation Overview

1. introduction

» atmospheric emissions estimation: what is our goal and what
data we have?
» atmospheric linear inverse problem formulation

2. theory: modeling and estimation methods for atmospheric
inversion

» standard and Bayesian approaches to linear inversion
» example on ETEX-I test release
3. applications to atmospheric emissions estimation
» multi-species emissions
» plume bias correction: towards non-linear regression
» spatial-temporal emissions estimation:
» (Cs-137 emissions from Chernobyl wildfires

» atmospheric microplastics
P towards satellite data inversion: ammonia case



Introduction: linear inverse problem formulation
Our goal:
> to estimate the time-profile of atmospheric emissions, known
also as the source term



Introduction: linear inverse problem formulation
Our goal:
> to estimate the time-profile of atmospheric emissions, known
also as the source term,
What data we have:
» concentration/deposition measurements
> e.g. Xel33 concentrations from CTBTO stations (map for the

year 2014):
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Introduction: linear inverse problem formulation
What data we have:
» atmospheric transport model driven by meteorological
reanalysis
» e.g. FLEXPART backward runs for each Xel33 observation
from the CTBTO network:
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Introduction: linear inverse problem formulation

» Suppose that the emissions (source term) are stored in the
vector x representing each time-step of temporal discretization

X = [x1,x2,X3, ..., Xp] (1)
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Introduction: linear inverse problem formulation

» Suppose that the emissions (source term) are stored in the
vector x representing each time-step of temporal discretization

X = [x1,x2,X3, ..., Xp] (1)

> Assumption: each observation can be explained as a linear
combination of simulated coefficients m; ; (called
source-receptor-sensitivity (SRS) coefficients) and x as

Yi=mj1x1+ mjoxo + -+ MjnXp, (2)

» using atmospheric transport model, we can calculate SRSs
coefficients saying:

» when unit release happen in given location and time-period
(sensor, observation y;), what would be observed on location
of interest (emission location) if we go backward in time (SRSs
mi;)



Introduction: linear inverse problem formulation
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Introduction: linear inverse problem formulation

Yi = -+ -+mj 103 X103+ M;j 104 X104+Mj 105 X105+ - -+Mj 111 X111+Mj 112 X112,
—— —— N——
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Introduction: linear inverse problem formulation
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Introduction: linear inverse problem formulation

Yi = -+ -+mj 103 X103+Mj 104 X104+Mj 105 X105+ - -+mj 111 X111+mM;j 112 X112,
N—— —— N——
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Introduction: linear inverse problem formulation
> we can compare
» actual measurements (y € RP*!) and
» predicted measurements: modeled sensitivities multiplied by
source term (common for all) values
Y1 =myi1x1 + mMy2Xo + -+ My pXp,

Y2 =mo 1X1 + Mo2Xo + -+ - + Mo nXp,

Yp =Mp1X1 + mp 2X2 +--+ Mp nXn,



Introduction: linear inverse problem formulation

> we can compare
» actual measurements (y € RP*!) and
» predicted measurements: modeled sensitivities multiplied by
source term (common for all) values

Y1 =myi1x1 + mMy2Xo + -+ My pXp,

Y2 =mo 1X1 + Mo2Xo + -+ - + Mo nXp,

Yp =Mp1X1 + mp 2X2 +--+ Mp nXn,

» the comparison in compressed form:

1 mi1 mi2 -+ Mip 1
y2 mp1 Mo -+ M2y
y= . = . . ) = Mx,
Xn
Yp mp1r Mp2 -+ Mpp

where the source term vector x is unknown and need to be
estimated.



Introduction: linear inverse problem formulation

» So far, any questions or comments?
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Theory: modeling and estimation

y=Mx+e (3)
possible solution:

» least-squares: x 5 = (MTM)_1 My
» non-stable due to the ill-conditioned inversion caused by e.g.
sparse monitoring network or uncertainties of atmospheric
modeling

> optimization formulation:
Xoptim = arg miny ((y - Mx)T R (y — Mx) + ag(x, 0))

» need for selection of tuning parameters, e.g. o, 6, R
» need for choice of g(x,0) — e.g. ridge regression, LASSO,
etc.

» Bayesian modeling

» more demanding due to model development and parameters
estimation
> we can estimate the shape of g(x,8) and tuning parameters



Theory: modeling and estimation - Bayesian approach

» Bayes rule (with € being the set of all model parameters and y
being available data)

p(x,0ly) < p(y|x,0)p(x,0), (4)

where
> p(x,0|y) is the posterior distribution
> p(y|x,8) is the data likelihood function (model)
> p(x,8) is the prior distribution of model parameters



Theory: modeling and estimation - Bayesian approach
Optimization formulation (with Tikhonov term, g(x) = x” B!x):

- : _ T p-1(, Tp-1
Xoptim = argmin (y —Mx)" R (y—Mx)+ax'B x| (5)

/

-~

data term regularization



Theory: modeling and estimation - Bayesian approach
Optimization formulation (with Tikhonov term, g(x) = x” B!x):
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> its Bayesian counterpart is the prior model:
1 -
p(y|x, R) = Ny(Mx, R) x exp (—z(y— Mx)TR 1(y—Mx))
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» we can further select prior models for R and B and estimate
them



Theory: modeling and estimation - Bayesian approach
Optimization formulation (with Tikhonov term, g(x) = x” B!x):

- : _ T p-1(, Tp-1
Xoptim = argmin (y —Mx)" R (y—Mx)+ax'B x| (5)

data term regularization

> its Bayesian counterpart is the prior model:
1 -
p(y|x, R) = Ny(Mx, R) x exp (—2(y— Mx)TR 1(y—Mx))
1
p(x|B) = Nx(0, B) exp (—2xTB_1x>

» we can further select prior models for R and B and estimate
them

> analytical solution typically not available —> sampling
methods, expectation-maximization-like iterative methods such
as Variational Bayes method



Theory: modeling and estimation - Bayesian approach

> Variational Bayes method gives us the form of posterior as

p0ily) o exp (Eso,) (INp(8.¥))) , i=1....q. (6)

which has the same functional form as a prior — hurray, we
can iterate



Theory: modeling and estimation - Bayesian approach

> Variational Bayes method gives us the form of posterior as

p0ily) o exp (Eso,) (INp(8.¥))) , i=1....q. (6)

which has the same functional form as a prior — hurray, we
can iterate

» see simple scalar example for model d = ax + e
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Theory: modeling and estimation - ETEX example

» ETEX-| (European tracer experiment) in 1994,

» 340 kg of inert perfluoromethylcyclohexane (PMCH) was
released during 12 hours in Brittany, France.

> 168 stations over the Europe.

Concentration of PMCH, 25.10.1994, 16:00 UTC
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Theory: modeling and estimation - ETEX example

> example reconstruction with the true release and two different

meteorological reanalysis

x 10”2 SRS using ERA-Interim

s x 102 SRS using ERA-40

true
true

reconstructions M*x,
reconstructions M*x,

measurementsy 112 measurementsy 112



Theory: modeling and estimation - ETEX example

>

example reconstruction with the true release and two different

meteorological reanalysis

true

reconstructions M*x,
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Theory: modeling and estimation - ETEX example

» least-squares solution,
X|s = arg miny ((y —~Mx)T R (y — Mx)) for R=1:

T LT
Xis = <M M) MTy (7)
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Theory: modeling and estimation - ETEX example

» non-negative least-squares solution (s.t. x > 0)

ola | . - | 7, PN .
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Theory: modeling and estimation - ETEX example

» LASSO: use of L1 norm in regularization — assumption of
sparsity,
xLasso = argmin ((y = Mx)" R~ (y = Mx) + al x|,
st. x>0
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Theory: modeling and estimation - ETEX example -
LS-APC algorithm

Least Square with Adaptive Prior Covariance (LS-APC) model:

» source term vector model
» we assume correlation between neighboring source term
elements
p(xj1) = N (=1, )
with prior model p(/;) favoring sparse (/; — 0) or smooth
(/; = —1) solution
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Least Square with Adaptive Prior Covariance (LS-APC) model:
» source term vector model
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Theory: modeling and estimation - ETEX example -

LS-APC algorithm
Least Square with Adaptive Prior Covariance (LS-APC) model:
» source term vector model
» we assume correlation between neighboring source term
elements
p(x541) = N (~ g 1) (8)
with prior model p(/;) favoring sparse (/; — 0) or smooth
(/; = —1) solution
» the covariance structure shape, matrix B, of the prior model

p(x)=N(0,B)
1 0 0 O
- /1 0 0
B =LVL', where L = (9)
0o . 0
0 0 /1 1

» non-negativity of emissions is achieved by the choice of the
prior model p(x) as the truncated Gaussian distribution with
non-negative support

> variational Bayes solution leading to an iterative algorithm



Theory: modeling and estimation - ETEX example

» LS-APC solution
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[Tichy, O., Smidl, V., Hofman, R., and Stohl, A.: LS-APC v1.0: a tuning-free method for the linear
inverse problem and its application to source-term determination, Geosci. Model Dev., 2016.]
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Theory: modeling and estimation

» So far, any questions or comments?



Applications

» multi-species emissions
» plume bias correction: towards non-linear regression

» spatial-temporal emissions estimation:

» (Cs-137 emissions from Chernobyl wildfires
» atmospheric microplastics
> towards satellite data inversion: ammonia case



Applications: multi-species emissions

» often, we do not have one emitted specie, but a mixture of
different species:
» complex multi-nuclide emissions in the case of nuclear
accidents
» different size of fractions, e.g. from fires
» different emissions altitudes

» it makes sense that these species are (e.g. for a given
time-step) correlated



Applications: multi-species emissions

P recal the the covariance structure of the LS-APC model,

10 0 O
T L 1 0 0
B =LVL', where L= _ _
o . .0
0 0 /1 1

» we can model general structure of the matrix L, such as

(a) L for sparsity and smoothness (Ss) model (b) L for multi-specie inversion with bounded ratios (Br)
1 1



Applications: multi-species emissions - wildfires in Chernobyl

» substantial amount of Cs-137 has been emitted during April
2020 wildfires around Chernobyl and measured across Europe:




Applications: multi-species emissions - wildfires in Chernobyl
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Applications: multi-species emissions - wildfires in Chernobyl
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[Tichy, O., Evangeliou, N, Selivanova, A., and Smidl, V.: Inverse modeling of 137Cs during Chernobyl
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Applications: Plume bias correction

» motivation: wind angle, the case of low-level inversion over the
Central Europe in November 2011
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Fig 6. Visible satellite image at 12 UTC, 4 November 2011. Fog and stratus clouds covering the Czech
Republic indicates the presence of a strong low-level inversion. Wind below the inversion layer (950 hPa,
white arrows) differs significantly from the wind above the inversion layer (850 hPa, orange arrows). Red dots
show the locations of Praque and Budapest. Data obtained from EUMETSAT and GFS.

> few degrees in wind orientation can make a big difference in
SRS coefficients, i.e. the matrix M

[Leelosy et al., Numerical simulations of atmospheric dispersion of iodine-131 by different models, PloS
One, 2017]



Applications: Plume bias correction
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original run, t = 109 different wind angle, t = 109

45 45
Srs_ Srs_

40 40
[ ]
o o
2 2
k K

35 35

30 ==L 30 =aL

120 125 130 135 140 145 120 125 130 135 140 145

longitude longitude



Applications: Plume bias correction

original run, t = 108 different wind angle, t = 108
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Applications: Plume bias correction

original run, t = 107 different wind angle, t = 107
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Applications: Plume bias correction

original run, t = 106 different wind angle, t = 106
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Applications: Plume bias correction

original run, t = 105 different wind angle, t = 105
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Applications: Plume bias correction

original run, t = 104 different wind angle, t = 104
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original run, t = 103 different wind angle, t = 103
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original run, t = 102 different wind angle, t = 102
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Applications: Plume bias correction

original run, t = 101 different wind angle, t = 101
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Applications: Plume bias correction

> atmospheric transport model provide more than point
concentration predictions
» we can read predicted concentrations also around each
measurement



Applications: Plume bias correction

> atmospheric transport model provide more than point
concentration predictions

» we can read predicted concentrations also around each

measurement
as original run, t = 101 s different wind angle, t = 101
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Applications: Plume bias correction

» what information we have

>< measurement x c(Sh,is Sv,i + Asu, ti)
@ model prediction
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Applications: Plume bias correction

» what information we have

measurement . : ;

>< easurement x(,(s/,_,‘h‘..,+A‘s,../,,)

@ model prediction !
at measurement location

@ model prediction in neighborhood

1
1
1
I
e DS e(shisuinti)
@< ----- - - - - - - =
c(sn,i + Asp, 8u,isti) c(8p,i — Dsp, Su,isti)

latitude

Asy,

1
1
1
1
1
1
\

longitude

» we can formalize this information to SRS-like matrices as
horizontal, vertical, and temporal gradients around each
measurement, yielding

Mha MV7Mt

of the same size as the original SRS matrix M



Applications: Plume bias correction - towards non-linear
regression

> formally:

M
y:(M+Hth+HVMV+HtMt)X (10)

» M, M, and M; are simulated sensitivities of horizontal,
vertical, and temporal gradients around each measurement

» Hp, H,, and H; are matrices with unknown weights (bias
corrections) on diagonals

— bilinear problem



Applications: Plume bias correction - towards non-linear
regression

> formally:

M
y:(M+Hth+HVMV+HtMt)X (10)

» M, M, and M; are simulated sensitivities of horizontal,
vertical, and temporal gradients around each measurement

» Hp, H,, and H; are matrices with unknown weights (bias
corrections) on diagonals

— bilinear problem

> in Bayesian models for Hs: assumptions such as

» only small corrections are allowed in time and space
» bias corrections of neighboring sensors are correlated

[Tichy, O., Smidl, V. and Evangeliou, N.: Source term determination with elastic plume bias correction,
Journal of Hazardous Materials, vol.425, 2022.]



Applications: Plume bias correction - ETEX experiment

Example corrections (comparison with true release)

_ Bias correction with true release
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Applications: Plume bias correction - ETEX experiment

o True release R? = -1.5759 4 Bias correction with true release R? = 0.64896
_ 520 estimated release 5 ,
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Applications: spatial-temporal emissions

> so far, we assumed point-source emissions

» the emissions, however, can come from (part of) spatial

domain, introducing the whole new complexity to the
estimation problem

» measurements are then formed by contributions from possible
many locations
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Applications: spatial-temporal emissions

> so far, we assumed point-source emissions

» the emissions, however, can come from (part of) spatial
domain, introducing the whole new complexity to the
estimation problem

» measurements are then formed by contributions from possible
many locations
> examples:

» emissions from wildfires
» atmospheric microplastics
» satellite data: ammonia emissions



Applications: spatial-temporal emissions - Chernobyl

wildfires
» Chernobyl wildfires have spatial-temporal character, see map

based on FIRMS satellite data (Fire Information for Resource
Management System, NASA):

BELARUS

m o
3 Kyivregion’
S N

Fig. 1. Location of active fires from April 3-20, 2020, according to satellite data (+ - April 3-7, & - April 8-9, ® - April 10-11, » - April 12-13, m - April 16-20). The
main areas of fires are shown by ovals: 1- Polissia district; 2- near the villages of Chystohalivka and Kopachi; 3 - the cooling pond of ChNPP; 4- Ovruch district; 5 - left
bank of the Pripyat River.

[Talerko, M., et al.: Simulation study of radionuclide atmospheric transport after wildland fires in the
Chernobyl Exclusion Zone in April 2020, Atmospheric Pollution Research, 2021]



Applications: spatial-temporal emissions - Chernobyl
wildfires

> the spatial-temporal inverse problem can be formulated as

y = Z Mlon, latXlon, lat + e, (11)

lon, lat

where M is the 4D tensor (latitude, longitude, measurements,
time)



Applications: spatial-temporal emissions - Chernobyl
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Applications: spatial-temporal emissions - microplastics

» atmospheric microplastics: relatively difficult to measure and

analyze
> see example dataset of microplastics and microfibers data:

~] _* measuring stations

latitude

longitude

[Brahney, J., et al.: Plastic rain in protected areas of the United States, Science, 2020]



Applications: spatial-temporal emissions - microplastics

(b) Microfibers

(a) Microplastics
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[Evangeliou N., Tichy O., Eckhardt S., Groot Zwaaftink C., Brahney J. , Sources and fate of
atmospheric microplastics revealed from inverse and dispersion modelling; from global emissions to
deposition, Journal of Hazardous Materials, 2022.]
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huge amount of data compared to concentration
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given vertical level



Applications: spatial-temporal emissions - ammonia from
satellite data

» Cross-track Infrared Sounder (CrlS) satellite measurements: a
huge amount of data compared to concentration
measurements

» measurement available (almost) for each spatial grid-point and
given vertical level

» non-linear observation model for each grid-point

Inv* =Inv®+ A (In vmedel va> (12)

» ymodel js modeled concentration from with contributions from

the whole domain



Applications: spatial-temporal emissions - ammonia from
satellite data
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[Tichy O., Eckhardt S., Balkanski Y., Hauglustaine D., and Evangeliou N., Decreasing trends of
ammonia emissions over Europe seen from remote sensing and inverse modelling, Atmospheric
Chemistry and Physics, 2023.]
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» the approach allows for further assumptions and extensions
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» to assume ratios between species for multi-species source terms
» bias correction of an atmospheric transport model
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Thank you for your attention.
Feel free to ask.



