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Presentation Overview

1. introduction
I atmospheric emissions estimation: what is our goal and what

data we have?
I atmospheric linear inverse problem formulation

2. theory: modeling and estimation methods for atmospheric
inversion
I standard and Bayesian approaches to linear inversion
I example on ETEX-I test release

3. applications to atmospheric emissions estimation
I multi-species emissions
I plume bias correction: towards non-linear regression
I spatial-temporal emissions estimation:

I Cs-137 emissions from Chernobyl wildfires
I atmospheric microplastics
I towards satellite data inversion: ammonia case



Introduction: linear inverse problem formulation
Our goal:
I to estimate the time-profile of atmospheric emissions, known

also as the source term

,
What data we have:
I concentration/deposition measurements
I e.g. Xe133 concentrations from CTBTO stations (map for the

year 2014):
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Introduction: linear inverse problem formulation
What data we have:
I atmospheric transport model driven by meteorological

reanalysis
I e.g. FLEXPART backward runs for each Xe133 observation

from the CTBTO network:



Introduction: linear inverse problem formulation
I Suppose that the emissions (source term) are stored in the

vector x representing each time-step of temporal discretization

x = [x1, x2, x3, . . . , xn] (1)

I Assumption: each observation can be explained as a linear
combination of simulated coefficients mi ,j (called
source-receptor-sensitivity (SRS) coefficients) and x as

yi = mi ,1x1 +mi ,2x2 + · · ·+mi ,nxn, (2)

I using atmospheric transport model, we can calculate SRSs
coefficients saying:
I when unit release happen in given location and time-period

(sensor, observation yi ), what would be observed on location
of interest (emission location) if we go backward in time (SRSs
mi,j)
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0

x112,
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Introduction: linear inverse problem formulation

yi = · · ·+mi ,103︸ ︷︷ ︸
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Introduction: linear inverse problem formulation
I we can compare

I actual measurements (y ∈ Rp×1) and
I predicted measurements: modeled sensitivities multiplied by

source term (common for all) values

y1 =m1,1x1 +m1,2x2 + · · ·+m1,nxn,

y2 =m2,1x1 +m2,2x2 + · · ·+m2,nxn,

...
...

yp =mp,1x1 +mp,2x2 + · · ·+mp,nxn,

I the comparison in compressed form:

y =


y1
y2
...
yp

 =


m11 m12 · · · m1n
m21 m22 · · · m2n
...

...
. . .

...
mp1 mp2 · · · mpn


 x1

...
xn

 = Mx ,

where the source term vector x is unknown and need to be
estimated.
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Introduction: linear inverse problem formulation

I So far, any questions or comments?



Theory: modeling and estimation

y = Mx + e (3)

possible solution:

I least-squares: xLS =
(
MTM

)−1 MTy
I non-stable due to the ill-conditioned inversion caused by e.g.

sparse monitoring network or uncertainties of atmospheric
modeling

I optimization formulation:
xoptim = argminx

(
(y −Mx)T R−1 (y −Mx) + αg(x ,θ)

)
I need for selection of tuning parameters, e.g. α, θ, R
I need for choice of g(x ,θ) −→ e.g. ridge regression, LASSO,

etc.
I Bayesian modeling

I more demanding due to model development and parameters
estimation

I we can estimate the shape of g(x ,θ) and tuning parameters
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Theory: modeling and estimation - Bayesian approach

I Bayes rule (with θ being the set of all model parameters and y
being available data)

p (x ,θ|y) ∝ p (y |x ,θ)p (x ,θ), (4)

where
I p (x ,θ|y) is the posterior distribution
I p (y |x ,θ) is the data likelihood function (model)
I p (x ,θ) is the prior distribution of model parameters



Theory: modeling and estimation - Bayesian approach
Optimization formulation (with Tikhonov term, g(x) = xTB−1x):

xoptim = argmin
x

(y −Mx)T R−1 (y −Mx)︸ ︷︷ ︸
data term

+αxTB−1x︸ ︷︷ ︸
regularization

 (5)

I its Bayesian counterpart is the prior model:

p(y |x ,R) = Ny (Mx ,R) ∝
∣∣R−1∣∣ exp(−1

2
(y −Mx)T R−1 (y −Mx)

)
p(x |B) = Nx(0,B) ∝

∣∣B−1∣∣ exp(−1
2
xTB−1x

)
I we can further select prior models for R and B and estimate

them
I analytical solution typically not available –> sampling

methods, expectation-maximization-like iterative methods such
as Variational Bayes method
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Theory: modeling and estimation - Bayesian approach

I Variational Bayes method gives us the form of posterior as

p̃(θi |y) ∝ exp
(
Ep̃(θ/i |y) (ln p(θ, y))

)
, i = 1, . . . , q, (6)

which has the same functional form as a prior −→ hurray, we
can iterate

I see simple scalar example for model d = ax + e
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Theory: modeling and estimation - ETEX example
I ETEX-I (European tracer experiment) in 1994.
I 340 kg of inert perfluoromethylcyclohexane (PMCH) was

released during 12 hours in Brittany, France.
I 168 stations over the Europe.
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Theory: modeling and estimation - ETEX example

I example reconstruction with the true release and two different
meteorological reanalysis
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Theory: modeling and estimation - ETEX example

I example reconstruction with the true release and two different
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Theory: modeling and estimation - ETEX example

I least-squares solution,
xLS = argminx

(
(y −Mx)T R−1 (y −Mx)

)
, for R = I :

xLS =
(
MTM

)−1
MTy (7)
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Theory: modeling and estimation - ETEX example

I non-negative least-squares solution (s.t. x ≥ 0)
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Theory: modeling and estimation - ETEX example

I LASSO: use of L1 norm in regularization −→ assumption of
sparsity,
xLASSO = argminx

(
(y −Mx)T R−1 (y −Mx) + α||x ||1

)
,

s.t. x ≥ 0
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Theory: modeling and estimation - ETEX example -
LS-APC algorithm

Least Square with Adaptive Prior Covariance (LS-APC) model:
I source term vector model

I we assume correlation between neighboring source term
elements

p (xj+1) = N (−ljxj , vj) (8)
with prior model p(lj) favoring sparse (lj → 0) or smooth
(lj → −1) solution

I the covariance structure shape, matrix B, of the prior model
p (x) = N (0,B)

B = LVLT , where L =


1 0 0 0
lj 1 0 0

0
. . . . . . 0

0 0 ln−1 1

 (9)

I non-negativity of emissions is achieved by the choice of the
prior model p(x) as the truncated Gaussian distribution with
non-negative support

I variational Bayes solution leading to an iterative algorithm
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Theory: modeling and estimation - ETEX example

I LS-APC solution
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[Tichý, O., Šmídl, V., Hofman, R., and Stohl, A.: LS-APC v1.0: a tuning-free method for the linear
inverse problem and its application to source-term determination, Geosci. Model Dev., 2016.]



Theory: modeling and estimation

I So far, any questions or comments?



Applications

I multi-species emissions
I plume bias correction: towards non-linear regression
I spatial-temporal emissions estimation:

I Cs-137 emissions from Chernobyl wildfires
I atmospheric microplastics
I towards satellite data inversion: ammonia case



Applications: multi-species emissions

I often, we do not have one emitted specie, but a mixture of
different species:
I complex multi-nuclide emissions in the case of nuclear

accidents
I different size of fractions, e.g. from fires
I different emissions altitudes

I it makes sense that these species are (e.g. for a given
time-step) correlated



Applications: multi-species emissions

I recal the the covariance structure of the LS-APC model,

B = LVLT , where L =


1 0 0 0
l1 1 0 0

0
. . . . . . 0

0 0 ln−1 1


I we can model general structure of the matrix L, such as

(a) L for sparsity and smoothness (Ss) model
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Applications: multi-species emissions - wildfires in Chernobyl
I substantial amount of Cs-137 has been emitted during April

2020 wildfires around Chernobyl and measured across Europe:



Applications: multi-species emissions - wildfires in Chernobyl

[Tichý, O., Evangeliou, N, Selivanova, A., and Šmídl, V.: Inverse modeling of 137Cs during Chernobyl
2020 wildfires without the first guess, submited to Atmospheric Pollution Research, 2024.]
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[Tichý, O., Evangeliou, N, Selivanova, A., and Šmídl, V.: Inverse modeling of 137Cs during Chernobyl
2020 wildfires without the first guess, submited to Atmospheric Pollution Research, 2024.]



Applications: Plume bias correction
I motivation: wind angle, the case of low-level inversion over the

Central Europe in November 2011

I few degrees in wind orientation can make a big difference in
SRS coefficients, i.e. the matrix M

[Leelosy et al., Numerical simulations of atmospheric dispersion of iodine-131 by different models, PloS
One, 2017]
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concentration predictions
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Applications: Plume bias correction

I what information we have

I we can formalize this information to SRS-like matrices as
horizontal, vertical, and temporal gradients around each
measurement, yielding

Mh,Mv ,M t

of the same size as the original SRS matrix M
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Applications: Plume bias correction - towards non-linear
regression

I formally:

y =

M̃︷ ︸︸ ︷
(M + HhMh + HvMv + H tM t) x (10)

I Mh, Mv , and M t are simulated sensitivities of horizontal,
vertical, and temporal gradients around each measurement

I Hh, Hv , and H t are matrices with unknown weights (bias
corrections) on diagonals

=⇒ bilinear problem

I in Bayesian models for Hs: assumptions such as
I only small corrections are allowed in time and space
I bias corrections of neighboring sensors are correlated

[Tichý, O., Šmídl, V. and Evangeliou, N.: Source term determination with elastic plume bias correction,
Journal of Hazardous Materials, vol.425, 2022.]
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Applications: spatial-temporal emissions

I so far, we assumed point-source emissions
I the emissions, however, can come from (part of) spatial

domain, introducing the whole new complexity to the
estimation problem

I measurements are then formed by contributions from possible
many locations

I examples:
I emissions from wildfires
I atmospheric microplastics
I satellite data: ammonia emissions
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Applications: spatial-temporal emissions - Chernobyl
wildfires

I Chernobyl wildfires have spatial-temporal character, see map
based on FIRMS satellite data (Fire Information for Resource
Management System, NASA):

[Talerko, M., et al.: Simulation study of radionuclide atmospheric transport after wildland fires in the
Chernobyl Exclusion Zone in April 2020, Atmospheric Pollution Research, 2021]



Applications: spatial-temporal emissions - Chernobyl
wildfires

I the spatial-temporal inverse problem can be formulated as

y =
∑

lon, lat

M̃ lon, latx lon, lat + e, (11)

where M̃ is the 4D tensor (latitude, longitude, measurements,
time)

I work in progressEnsemble Kovalets prior
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Applications: spatial-temporal emissions - microplastics

I atmospheric microplastics: relatively difficult to measure and
analyze

I see example dataset of microplastics and microfibers data:
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[Brahney, J., et al.: Plastic rain in protected areas of the United States, Science, 2020]



Applications: spatial-temporal emissions - microplastics

[Evangeliou N., Tichý O., Eckhardt S., Groot Zwaaftink C., Brahney J. , Sources and fate of
atmospheric microplastics revealed from inverse and dispersion modelling; from global emissions to
deposition, Journal of Hazardous Materials, 2022.]



Applications: spatial-temporal emissions - ammonia from
satellite data

I Cross-track Infrared Sounder (CrIS) satellite measurements: a
huge amount of data compared to concentration
measurements

I measurement available (almost) for each spatial grid-point and
given vertical level

I non-linear observation model for each grid-point

ln v sat = ln v a + A
(
ln vmodel − ln v a

)
(12)

I vmodel is modeled concentration from with contributions from
the whole domain
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Applications: spatial-temporal emissions - ammonia from
satellite data

[Tichý O., Eckhardt S., Balkanski Y., Hauglustaine D., and Evangeliou N., Decreasing trends of
ammonia emissions over Europe seen from remote sensing and inverse modelling, Atmospheric
Chemistry and Physics, 2023.]



Conclusions remarks

I we formalized the linear atmospheric inversion problem
I we propose to estimate the emissions using the Bayesian

approach
I no need for extensive tuning of parameters
I flexible yet tractable model

I the approach allows for further assumptions and extensions
based on the task
I to assume ratios between species for multi-species source terms
I bias correction of an atmospheric transport model
I spatial-temporal emissions estimation

Thank you for your attention.
Feel free to ask.
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