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Problem description

The scheme of scintigraphy:
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Problem description

CT: Scintigraphy:
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Problem description
The scheme of tissues detection from renal scintigraphy
sequence:
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Problem description

reference background

pelvis

parenchym
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Problem description

Why should we do that?
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Problem description

Why should we do that?
e.g. Relative Renal Function (RRF) computation in clinical
practise:

◮ Computed from parenchyma activity during accumulation.
◮ Lp is activity in the left parenchyma.
◮ Rp is activity in the right parenchyma.
◮ RRF (for the left kidney):

RRF =
Lp

Lp + Rp
(1)
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Current Approaches

◮ It is possible to select a specific region and obtain its
activity in time.

[M. Caglar et al., Nuclear medicine communications, vol. 29, no. 11, p. 1002, 2008.]
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Current Approaches

◮ It is possible to select a specific region and obtain its
activity in time.

[M. Caglar et al., Nuclear medicine communications, vol. 29, no. 11, p. 1002, 2008.]

◮ Clear activity of parenchyma can be achieved by
subtraction of reference background.

◮ Problems: it is very time consuming and highly dependent
on physician.
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Current Approaches

Kidneys borders can be found using software AUTOROI.

[E. Garcia et al., Nuclear medicine communications, vol. 31, no. 5, p. 366, 2010.]
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Current Approaches

Kidneys borders can be found using software AUTOROI.

[E. Garcia et al., Nuclear medicine communications, vol. 31, no. 5, p. 366, 2010.]

◮ Focused only on kidney border.
◮ Manual interaction is necessary.
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Current Approaches

Dynamic renal study is examined in [Ståhl et al. 2011]; based
on compartment modeling.

[D. Ståhl et al., Image Analysis, 557-568, Springer Berlin Heidelberg, 2011.]

Ondřej Tichý Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences



Current Approaches

Dynamic renal study is examined in [Ståhl et al. 2011]; based
on compartment modeling.

[D. Ståhl et al., Image Analysis, 557-568, Springer Berlin Heidelberg, 2011.]

◮ A whole kidney is one compartment.
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Current Approaches

Dynamic studies of tumor are examined in [Chen et al. 2011].

[L. Chen et al., Medical Imaging, IEEE Transactions on, no. 99, pp. 1-16, 2011.]
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Current Approaches

Dynamic studies of tumor are examined in [Chen et al. 2011].

[L. Chen et al., Medical Imaging, IEEE Transactions on, no. 99, pp. 1-16, 2011.]

◮ Manual setting of number of compartments is necessary.
◮ Huge computation issues.
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Scalar Example of Blind Source Separation
◮ Consider following scalar model:

d = ax + e (2)
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Scalar Example of Blind Source Separation
◮ Consider following scalar model:

d = ax + e (2)

◮ Since e ∼ N (0, re), then

f (d |a, x , re) = N (ax , re) (3)

and priors for a and x are chosen as

f (a|ra) = N (0, ra) (4)

f (x |rx ) = N (0, rx ) (5)

Ondřej Tichý Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences



Scalar Example of Blind Source Separation
◮ Consider following scalar model:

d = ax + e (2)

◮ Since e ∼ N (0, re), then

f (d |a, x , re) = N (ax , re) (3)

and priors for a and x are chosen as

f (a|ra) = N (0, ra) (4)

f (x |rx ) = N (0, rx ) (5)

d

a x

re

ra rx
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Scalar Example of Blind Source Separation
◮ Following Variational Bayes (VB) method, we construct the

posterior density and compute estimates of parameters a
and x using iterative algorithm.

◮ Iterative VB algorithm estimates parameter using
estimates of others.
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Scalar Example of Blind Source Separation
◮ Following Variational Bayes (VB) method, we construct the

posterior density and compute estimates of parameters a
and x using iterative algorithm.

◮ Iterative VB algorithm estimates parameter using
estimates of others.
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Blind source separation (BSS)

◮ Each recorded image is a superposition of biological
tissues:

dt = a1x1,t + a2x2,t + · · · + arxr ,t (6)

◮ t is the time index
◮ r is the number of physiological tissues
◮ d is the observed image (stored column-wise)
◮ ak is the image of the k th tissue (stored column-wise)
◮ xk ,t is the weight of the k th tissue image in time t
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Blind source separation (BSS)

[J.W. Miskin. Ensemble learning for independent component analysis, PhD thesis, University of Cambridge, 2000.]

Problem specifics:
◮ Poisson observation noise.
◮ Positivity of tissue images and time-activity curves.
◮ Unknown number of tissues.
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Blind source separation (BSS)

[J.W. Miskin. Ensemble learning for independent component analysis, PhD thesis, University of Cambridge, 2000.]

Problem specifics:
◮ Poisson observation noise.
◮ Positivity of tissue images and time-activity curves.
◮ Unknown number of tissues.

f (dt |A,X , ω) = tN (Ax̄t , ω
−1Ip ⊗ In), (7)

f (ω) = G(ϑ0, ρ0), (8)

f (xk |υk ) = tN (0n,1, υ
−1
k In), (9)

f ([υ1, . . . , υr ]) =

r
∏

k=1

G(αk ,0, βk ,0), (10)

f (ak ) = tN (0p,1, Ip), (11)
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Blind source separation (BSS)

d

a x

re

ra rx

dt

ak xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r
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Blind source separation (BSS)

d

a x

re

ra rx

dt

ak xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r

◮ Note that biologically meaningful solution is not
guaranteed.
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Deconvolution in BSS (BCMS)
[O. Tichý, V. Šmídl, and M. Šámal. In ECCOMAS Conf. on Comp. Vision and Medical Image Proc., 2013.]

Motivation:
◮ The time-activity curves of tissues are convolution of the

input activity (the blood) and tissue-specific kernels.
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Deconvolution in BSS (BCMS)
[O. Tichý, V. Šmídl, and M. Šámal. In ECCOMAS Conf. on Comp. Vision and Medical Image Proc., 2013.]

Motivation:
◮ The time-activity curves of tissues are convolution of the

input activity (the blood) and tissue-specific kernels.
◮ The shape of the kernels is expected to be formed by a

constant plateau followed by monotonic decrease to zero.
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Deconvolution in BSS (BCMS)
[O. Tichý, V. Šmídl, and M. Šámal. In ECCOMAS Conf. on Comp. Vision and Medical Image Proc., 2013.]

Motivation:
◮ The time-activity curves of tissues are convolution of the

input activity (the blood) and tissue-specific kernels.
◮ The shape of the kernels is expected to be formed by a

constant plateau followed by monotonic decrease to zero.

t t t

=

Organ time activity, xf Blood time activity, b

*

Convolution kernel uf
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Deconvolution in BSS (BCMS)
◮ Each time-activity curve, xk , is modeled as a convolution:

xt,k =
t

∑

m=1

bt−m+1um,k (12)

Ondřej Tichý Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences



Deconvolution in BSS (BCMS)
◮ Each time-activity curve, xk , is modeled as a convolution:

xt,k =
t

∑

m=1

bt−m+1um,k (12)

◮ Convolution kernels of each tissue are modeled as
additions stored in vectors wk ,

wi ,k =

{

hk sk ≤ i ≤ sk + lk
0 otherwise

(13)
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Deconvolution in BSS (BCMS)
◮ Each time-activity curve, xk , is modeled as a convolution:

xt,k =
t

∑

m=1

bt−m+1um,k (12)

◮ Convolution kernels of each tissue are modeled as
additions stored in vectors wk ,

wi ,k =

{

hk sk ≤ i ≤ sk + lk
0 otherwise

(13)

t tsf

hf

lf

Convolution kernel uf

⇐⇒

Differences of uf , wf
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Deconvolution in BSS (BCMS)

BSS+ model BCMS model

dt

ak xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r

dt

ak xk

υk

ω

wk

ξk

g

ψ

α0, β0

ϑ0, ρ0

κ0, ν0

ζ0, η0

k = 1, . . . , r
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Deconvolution in BSS (BCMS)
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Deconvolution in BSS (BCMS)

BSS+ results BCMS results
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Ondřej Tichý Blind Source Separation and Deconvolution of Dynamic Medical Image Sequences



Automatic regions of interest in BSS (FAROI)
[V. Šmídl, O. Tichý. In 2012 IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.]

region
of interest

(for the right
     kidney)
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Automatic regions of interest in BSS (FAROI)
[V. Šmídl, O. Tichý. In 2012 IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.]

region
of interest

(for the right
     kidney)

Each pixel ai ,k in the tissue image ak has an indicator variable
ii ,k such that

ii ,k =

{

1 i-th pixel has non-zero activity in the k-th factor,

0 i-th pixel has zero activity in the k-th factor.
(14)
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Automatic regions of interest in BSS (FAROI)

◮ We would like to have two extremes:

f (ai ,k) =

{

U(0,1) ii ,k = 1,

tN (0, ξ−1
k ) ii ,k = 0,

◮ U(0,1) is a prior model of the tissue.
◮ tN (0, ξ−1

k ) is a model of a "soft zero".
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Automatic regions of interest in BSS (FAROI)

◮ We would like to have two extremes:

f (ai ,k) =

{

U(0,1) ii ,k = 1,

tN (0, ξ−1
k ) ii ,k = 0,

◮ U(0,1) is a prior model of the tissue.
◮ tN (0, ξ−1

k ) is a model of a "soft zero".

◮ We model ii ,k as a continuous variable, ii ,k ∈ 〈0,1〉

f (ai ,k) = U(0,1)ii,k × tN (0, ξ−1
k )(1−ii,k ) (15)

(for computation reason)
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Automatic regions of interest in BSS (FAROI)

dt

ak xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r

dt

ai,k xk

ξki i,k υk

ω

λ0 φ0, ψ0 α0, β0

ϑ0, ρ0

i = 1, . . . , p

k = 1, . . . , r
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Automatic regions of interest in BSS (FAROI)

FA with ROI: BSS:
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Automatic regions of interest in BSS (FAROI)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

[C.M. Bishop and M.E. Tipping. The 16th Conference on Uncertainty in Artificial Intelligence, pages 46–53, 2000.]

Automatic relevance determination (ARD) principle:

f (s|θ) =N (0,diag(θ)), (16)

f (θt) =G(α0, β0), (17)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

[C.M. Bishop and M.E. Tipping. The 16th Conference on Uncertainty in Artificial Intelligence, pages 46–53, 2000.]

Automatic relevance determination (ARD) principle:

f (s|θ) =N (0,diag(θ)), (16)

f (θt) =G(α0, β0), (17)

◮ The expected value of the prior variance of a redundant
parameter approaches zero in the Variational Bayes
solution.
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Sparsity and deconvolution in BSS (S-BSS-vecDC)
Scalar example again:

d = ax + e, e ∼ N (0, re) (18)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)
Scalar example again:

d = ax + e, e ∼ N (0, re) (18)

p(a|ra) = tN (0, r−1
a ), p(ωa) = G(αa, βa), (19)

d

a x

ra rx

re

αa, βa αx , βx
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Sparsity and deconvolution in BSS (S-BSS-vecDC)
Scalar example again:

d = ax + e, e ∼ N (0, re) (18)

p(a|ra) = tN (0, r−1
a ), p(ωa) = G(αa, βa), (19)

d

a x

ra rx

re

αa, βa αx , βx
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Sparsity and deconvolution in BSS (S-BSS-vecDC)
improved from [V. Šmídl, O. Tichý., ECML 2013, volume 8189 of LNCS, pages 548–563, Springer, 2013.]

Matrix formulation of the data model:

D = [a1, . . . ,ar ][x1, . . . ,xr ]
′ = AX ′. (20)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)
improved from [V. Šmídl, O. Tichý., ECML 2013, volume 8189 of LNCS, pages 548–563, Springer, 2013.]

Matrix formulation of the data model:

D = [a1, . . . ,ar ][x1, . . . ,xr ]
′ = AX ′. (20)

◮ Each time-activity curve arrise as convolution of the input
function and tissue-specific kernels as

xk = b ∗ uk , ∀k = 1, . . . , r . (21)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)
improved from [V. Šmídl, O. Tichý., ECML 2013, volume 8189 of LNCS, pages 548–563, Springer, 2013.]

Matrix formulation of the data model:

D = [a1, . . . ,ar ][x1, . . . ,xr ]
′ = AX ′. (20)

◮ Each time-activity curve arrise as convolution of the input
function and tissue-specific kernels as

xk = b ∗ uk , ∀k = 1, . . . , r . (21)

Thus,

D = AX ′ = A[u1, . . . ,ur ]
′









b1 0 0 0
b2 b1 0 0
. . . b2 b1 0
bn . . . b2 b1









′

= AU ′B′.

(22)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

◮ We adopt ARD principle for modeling A and U.
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

◮ We adopt ARD principle for modeling A and U.
◮ Model of pixels:

f (ai |ξi) = tN (01,r ,diag(ξi)
−1), ∀i = 1, . . . ,p, (23)

f (ξi) =

r
∏

k=1

G(φik ,0, ψik ,0), (24)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

◮ Model of convolution kernels:

f (vec(U)|Υ) = tN (0nr ,1,Υ
−1), (25)

f (Υ) =

nr
∏

j=1

G(αj ,0, βj ,0), (26)

◮ Vectorized form of U allows us to model the relation
between convolution kernels mutually
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

◮ Model of convolution kernels:

f (vec(U)|Υ) = tN (0nr ,1,Υ
−1), (25)

f (Υ) =

nr
∏

j=1

G(αj ,0, βj ,0), (26)

◮ Vectorized form of U allows us to model the relation
between convolution kernels mutually

◮ Model of the input function:

f (b|ς) = tN (0n,1, ς
−1In), (27)

f (ς) =G(ζ0, η0), (28)
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

dt

ak xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r

dt

ai
vec(U) b

ξi

Υ
ς

ω

φ0, ψ0

α0, β0
ζ0, η0

ϑ0, ρ0

i = 1, . . . , p
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

Example result:

S-BSS-vecDC: BSS:
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Sparsity and deconvolution in BSS (S-BSS-vecDC)

Example result:

S-BSS-vecDC: BSS:
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Validation

◮ How to validate or compare the algorithms since typically
no ground truth is available?
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Validation

◮ How to validate or compare the algorithms since typically
no ground truth is available?

What we can do:
◮ Validation on synthetic data.
◮ Comparison with physician’s separation results.
◮ Comparison on parameters such as RRF.
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Validation on Synthetic Data

We generate data composed of 3 sources and noise.

 Ground Truth

20 40

20 40

20 40

BSS+

20 40

FAROI

20 40

CAM−CM

20 40

BCMS

20 40

S−BSS−vecDC

20 40

20 40 20 40 20 40 20 40 20 40

20 40 20 40 20 40 20 40 20 40
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Validation on Real Data from Renal Scintigraphy

◮ We have 19 sequences where activities of parenchyma
and heart are selected using experienced physician.
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Validation on Real Data from Renal Scintigraphy

◮ We have 19 sequences where activities of parenchyma
and heart are selected using experienced physician.

◮ We use these physician’s results as our ground truth.
◮ The statistics such as MSE, MAE, or median can be

calculated for the whole dataset and compared.
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Validation on Real Data from Renal Scintigraphy
Experiment description:

◮ Each image has resolution 128 × 128 pixels.
◮ Each sequence contains 100 − 180 images.
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Validation on Real Data from Renal Scintigraphy
Experiment description:

◮ Each image has resolution 128 × 128 pixels.
◮ Each sequence contains 100 − 180 images.
◮ We use automated ROIs based on those from physician

hiding left or right kidney = we have 38 kidneys in
experiment.
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Validation on Real Data from Renal Scintigraphy
Experiment description:

◮ Each image has resolution 128 × 128 pixels.
◮ Each sequence contains 100 − 180 images.
◮ We use automated ROIs based on those from physician

hiding left or right kidney = we have 38 kidneys in
experiment.
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◮ Activity of parenchyma is examined using algorithms: BSS,
FAROI, CAM-CM, BCMS, S-BSS-vecDC.
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Validation on Real Data from Renal Scintigraphy

Example result:

alg: FA

0 100 200

par. je: 2

data: 307

0 100 200

0 100 200

0 100 200

alg: FAROI

0 100 200

par. je: 2

0 100 200

0 100 200

0 100 200

alg: CAM−CM

0 100 200

par. je: 3

0 100 200

0 100 200

0 100 200

alg: CFA

0 100 200

par. je: 4

0 100 200

0 100 200

0 100 200

alg: CROIFAv2
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par. je: 2
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0 100 200
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Validation on Real Data from Renal Scintigraphy

Example result:

 data 307, Ground Truth

0 100 200

 FA

0 100 200
0

0.5

1

1.5
MSE: 0.006634

 FAROI

0 100 200
0

0.5

1

1.5
MSE: 0.0029824

 CAM−CM

0 100 200
0

0.5

1

1.5
MSE: 0.026769

 CFA

0 100 200
0

0.5

1

1.5
MSE: 0.015865

 CROIFAv2

0 100 200
0

0.5

1

1.5
MSE: 0.002343
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Validation on Real Data from Renal Scintigraphy

algorithm mean MLE ± std MLE mean MAE ± std MAE best MLE best MAE

BSS+ 0.0314±0.0340 0.1197±0.0687 3 4
FAROI 0.0358±0.0469 0.1202±0.0860 9 7

CAM-CM 0.0376±0.0262 0.1444±0.0567 0 1
BCMS 0.0207±0.0296 0.0914±0.0601 10 11

S-BSS-vecDC 0.0124±0.0118 0.0730±0.0376 16 15
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Validation on Real Data from Renal Scintigraphy

algorithm mean MLE ± std MLE mean MAE ± std MAE best MLE best MAE

BSS+ 0.0314±0.0340 0.1197±0.0687 3 4
FAROI 0.0358±0.0469 0.1202±0.0860 9 7

CAM-CM 0.0376±0.0262 0.1444±0.0567 0 1
BCMS 0.0207±0.0296 0.0914±0.0601 10 11

S-BSS-vecDC 0.0124±0.0118 0.0730±0.0376 16 15
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Clinical Validation
◮ 107 data sets are available on

http://www.dynamicrenalstudy.org/ since March 2012.
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Clinical Validation
◮ 107 data sets are available on

http://www.dynamicrenalstudy.org/ since March 2012.
◮ Data are well described and RRFs are given.
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Clinical Validation

◮ 99 datasets are used (2 kidneys are required).
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Clinical Validation

◮ 99 datasets are used (2 kidneys are required).
◮ Each dataset: 180 images taken after each 10 seconds as

a matrix of 128 × 128 pixels.
◮ Part of accumulation of each sequence is selected.
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Clinical Validation

◮ 99 datasets are used (2 kidneys are required).
◮ Each dataset: 180 images taken after each 10 seconds as

a matrix of 128 × 128 pixels.
◮ Part of accumulation of each sequence is selected.

Our objection:
◮ Assessment of relative renal function using: BSS, FAROI,

CAM-CM, BCMS, S-BSS-vecDC.
◮ Comparison with expert RRFs via cumulative histogram.
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Clinical Validation

◮ Quantiles of the difference of the estimated RRF from the
reference value for all 99 patients.

algorithm ≦3% ≦5% ≦10% ≧10%

BSS+ 38.4% 57.6% 78.8% 21.2%
FAROI 43.4% 58.6% 83.8% 16.2%

CAM-CM 30.3% 48.5% 63.6% 36.4%
CFA 42.4% 59.6% 82.8% 17.2%

S-BSS-vecDC 46.5% 68.7% 86.9% 13.1%
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Conclusion

◮ Blind source separation methods were introduced.
◮ Sparsity modeling of tissue images was proposed.
◮ Convolution model within blind source separation was

proposed.
◮ Comparison on both synthetic and real data was given.
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Thank you for your attention.
Questions?
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