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What are Linear State Space Models?

@ Linear State Space Models (SSMs) are classical models in
engineering, signal processing, finance, neuroscience, etc.

@ Operate with finite-dimensional state vectors x(t) and input (or
control) vectors u(t) (the discrete version is defined analogously):

x = A(t)x(t) + B(t)u(t)
y = C(t)x(t) + D(t)u(t)

where x, x(t) € C9, u(t) € C", y € C™ and A, B, C, D are conformable.
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What are Linear State Space Models?
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By integrating x over time we obtain a trajectory of x. In practice most of
SSMs describe Linear Time Invariant (LTI) systems with fixed matrices.
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SSMs in Engineering: from linear ODE

@ SSMs are an essence of the modern control theory.

o Linear ODE systems or rational transfer functions allow to
immediately write a corresponding SSM.

@ First example: damped mass-spring system.
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SSMs in Engineering: from rational transfer function

@ Sometimes a transfer function can be given as a system description.

@ Rational transfer functions correspond to linear ODEs in terms of
input and output derivatives.
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SSMs in Neuroscience

Instead of real-valued signals neuroscientists deal with spike trains.

Decoding them is implemented via filtering, thus neuroscience
extensively uses signal processing toolkit.

For example, lots of biological systems are integrators of some kind
(e.g. eye positioning).

@ SSMs are a convenient tool to describe these processes.
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Let's train a SSM!

@ The simple definition suggests to simply plug randomly initialized
A, B, C, D into a gradient learner.

@ Indeed we can do so, but the results will not be miraculous...
o Flattened permuted MNIST results:

Method Val. acc. (%)
-LegS 98.34
-LagT 98.15

-LegT 6 =200 98.0

-LegT 6 = 20 91.75
-Rand  —=> 69.93 Z

Uladzislau Yorsh Structured State Space Models KTIML UK 8/44



Interlude 1: Laplace Transform

Laplace transform is the most essential integral transform in engineering.
o Defined as L[f] = [;° f(t)e”*'dt = F(s), invertible for many
functions.
e Linear, L[f x g] = L[f|L[g], L[f'] = sF(s) — f(0).
@ The latter shows that linear ODEs in time domain correspond to
polynomials in Laplace domain.

@ The ratio of Laplace transforms of output and input is called transfer
function.
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Interlude 1: Laplace Transform

Theorem: a transfer function can be converted into a SSM iff it can be
written as a proper (numerator degree < denominator degree) rational
function.

@ Intuitively, to compute higher order derivatives we need more
information.

@ Higher order of the numerator of the improper function thus
corresponds to a larger necessary amount of information than
provided by input.

o It makes the system non-causal, i.e. the output at time t depends on
the input at time 7 > t.
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Key takeaways so far

@ Many dynamical systems can be described by LTls
x = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

@ SSM equations can be obtained from transfer functions, but they
need to be rational and proper.

@ Transfer function is a ratio of an output and input Laplace transforms.

@ Laplace transform is intimately connected with ODEs describing the
system.

@ Good deep learning models cannot be naively built with randomly
initialized SSMs :(
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Legendre Memory Units

e Consider a task of implementing a continuous delay h(t) = f(t — 0)
by 0 units.

@ The task is a prototype for studying dynamical properties of neural
computers in neuroscience.

@ Has no solution in terms of a finite polynomial basis.

f(t)
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Legendre Memory Units

@ The corresponding transfer function is % = e 0.
@ It is not rational, so it needs an approximation.
@ The authors leverage Padé approximants for e~ and perform an

extensive trickery to make it numerically stable.

@ Even more trickery they use to derive the decoding for delays 6’ < 6
from the model for 6.

We defer to the outstanding Aaron Voelker's PhD thesis for a detailed
derivation in References.
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Legendre Memory Units

@ They arrive to the following SSM:

Om(t) = Am(t) + Bu(t)

where
AR A= (2i+1)] T <
Y (-1 iz
B e R™ B; = (2i +1)(-1) i,jeo0,...,n—1
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Legendre Memory Units

@ An intriguing result is that the state represents the sliding window as
coefficients in the basis of the first n Legendre polynomials:

/

o= [0
f(t—0)~Xi_s P <9> my(t)

where Py is the kth shifted Legendre polynomial.

@ Legendre polynomials are orthogonal, thus the resulting
representation is unique and optimal (in L2 sense).
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Legendre Memory Units
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First 11 shifted Legendre polynomials and an example function
decomposition in the Legendre basis.
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Interlude 2: Discretization

@ So far we've been talking about continuous time models.

@ They provide a powerful framework for analysis, but virtually all the
data we are working with are discrete.

@ Thus for putting them into practice we need to discretize the
obtained equations.
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Interlude 2: Discretization

The simplest method is the forward Euler:

Xer1 = Xk + A(Ax¢ + Buy) = (I + AA)x: + ABuy = Ax; + Bu;

However, it's unstable and its value is mostly illustrative. The commonly

used methods are:

B = (AA) YR - AB

AA
B=(1-AA/2)71AB

(I — AA/2)Y(1 + AA/2),

>
I

ZOH :
Trapezoid: A =

where A is some scalar time step.
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Interlude 2: Discretization

Forward Euler

Zero-Order Hold

‘Trapezoidal Method

—— True Functon.
—— Zero-order Hold

— True Functon
—— Trapezoidal Method
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Discretization methods illustrated.
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Legendre Memory Units: A Neural Network Module

@ The LMU layer resembles the
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The cell had shown unprecedented results, modeling sequences up to 1B
long in some setups, and can be implemented on neuromorphic HW.

Uladzislau Yorsh Structured State Space Models

KTIML UK 20/ 44



Key takeaways so far (2)

@ Imposing a structure on transition matrix A and input projection B
can provide SSM with special abilities and interpretation.

@ We have seen an example of such model derived from a task of
implementing a continuous delay.

@ SSM can be used as a part of a more general neural network module.
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HiPPO: High-Order Polynomial Projection Operator

The following two sections are adapted from the Albert Gu PhD thesis.

Assume a more general problem setup:

o Consider the task of online function approximation of f : Rt — R
@ We evaluate the approximation w.r.t some measure .
@ The measure places a weight on different parts of the past.

o The measure is also time-dependent z = p(t) supported on (—oo, t].
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HiPPO: High-Order Polynomial Projection Operator

@ A natural basis for the task is a set of polynomials (OPs) orthogonal
w.r.t. the measure:

b
Pis Pr 2 (Piy Pi) yo —/ PiPrdu® = 6
1 >0;a,beRU{—00,00}

@ Then the coefficients of the basis are simply c,(,t) = (f,Pk>“(t).

o Furthermore, differentiating by t through integral will often lead to ¢,
evolving in time: %cn = function of [ck(t)ken]
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HiPPO: High-Order Polynomial Projection Operator

Given a finite basis G of the first N OPs, HiPPO is a
composition of the two operators:

@ proj,: projects f to a polynomial in the span of G.

@ coef;: returns the coefficients of the polynomial in
terms of G.

It can be shown, that c(t) = [co(t),...,cn(t)]” follow &
an ODE c/(t) = A(t)c(t) + B(t)f(t). :
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HiPPO: High-Order Polynomial Projection Operator

flt)
proj;
to
coef,
15
ot = [ ‘ o)) = [3&}

Discrete-time HiPPO Recurrence 202,
— Continuous-time HiPPO ODE

Cry1 = AgCyx + B fi discretize

d
7¢O =A0c® +BOf(®)
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Example HiPPO Instances

Different measures lead to models with different capabilities:

o LegT: uniform measure on [t — 6, t]. Leads to the LMU up to
rescaling.

@ LegS: uniform measure on [0, t] with state equations:

—(2n+1)Y22k+1)Y2, n>k
A=< n+ 1, n=k
07 n < k
B, = (2n+ 1)}/?
LegS discretization is scale-equivariant, which allows to get rid of the A.

It also has gradients bounded from both sides and can be discretized in
O(N) steps by any method unlike LegT.
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Method

Error  Speed 1
(MSE)  (elements / s

LSTM
LMU (naive)
HIPPO-LegS

0.25 35,000 0
0.05 41,000
0.02 470,000 -1

Table 4.1: Function approximation er-
ror after 1 million time steps, with 256

hidden units.

—— Input function f

0 Time (normalized)

1

Figure 4.2: Input function and its reconstructions.
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(a) True function f(z)

(b) Error for different, 0’s in LegT

Figure 4.3: Function approximation comparison between LegT and LegS. LegT error is sensitive to
the choice of window length 6, especially if € is smaller than the length of the true function.
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HiPPO Generalization

The HiPPO framework can be generalized from OPs to any set of
orthonormal functions. An example model is FouT derived around
truncated Fourier basis:

;

-2, n=k=20
—2v2, n=0,kis odd
—2v2, k=0,nis odd

@ Due to Fourier basis Ane = =4, n, k odd
approximates delay better than 2k, n—k=1,kodd
LegT. —2mn, k—n=1,nodd

0, otherwise
2, n=20

B, ={2v2, nodd
0, otherwise
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Key takeaways so far (3)

We consider a task of online function approximation
We can weight our past by different positive measures z(t)

HiPPO is a framework how to obtain state space matrices
corresponding to these measures

It has a strong foundation on lingebraic and approximation theory
But tells nothing how to compute them fast :(
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The Threefold View on SSMs

Assume we are given some A, B, trainable C and D = 0 (e.g. HiPPO).
@ What kind of model do we have for discrete inputs?

SSMs are all of:
@ Continuous-time model
@ Recurrent model

© Convolutional model
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The Threefold View on SSMs

SSM is a continous model by definition. What are other interpretations?

@ Recurrent view reveals some intricate connections to RNNs:

o Gated recurrence is a backwards-Euler discretization of x = —x + u.
o Stacked SSMs with p.w. nonlinearities approximate x = —x + f(t, x).

o Convolutional view provides us with a faster way to compute output
through a discrete convolution:

y=uxK,K=(CB,CAB,...,CAB,...)

This can be done with FFT, but computing the kernel is a massive
computational challenge on its own.
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Structured State Spaces

@ So far we have only addressed the modeling challenge.

@ As we see, SSMs pose a computational challenge as well. What can
we try?
o Conjugates are equivalent: (A, B, C) ~ (V71AV,V~1B CV)
Two main techniques:

e Diagonalization
o Normal Plus Low Rank (DPLR)
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Structured State Spaces: Diagonalization

o v Easy powering, fast recurrent steps.
@ v Diagonalizable matrices are dense in complex.

e XFor HiPPO entries of V grow exponentially in N :(

Uladzislau Yorsh Structured State Space Models KTIML UK 33 /44



Structured State Spaces: Normal Plus Low Rank

Normal matrix is diagonalizable by unitary V.
@ v'Main HiPPO matrices can be decomposed in such way.
@ v'Much faster to compute than original SSM.
@ XRestrictive class.
@ XRequires lingebraic computational trickery for implementation.
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Structured State Spaces: Taking best of two worlds

o It appears, that by removing the "low rank” portion from DPLR from
LegS can yield a good approximation (named S4-LegS).

e Empirically it's slightly worse than LegS

@ For other HiPPOs it doesn’t work, nonetheless there exist other
diagonal approximations.

@ However, due to its properties S4-LegS can be considered as a
"default” or "original” SSM for application.
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Key takeaways so far (4)

@ HiPPO and Structured State Space Models (S4) are two different
approaches to two different problems.

@ Their intersection is mostly diagonal approximations of HiPPO or
diagonal-plus-low-rank HiPPO decompositions.

@ Diagonal or DPLR structure allows to compute both recurrent and
convolutional passes extremely fast.
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General Setup

Consider diagonal and DPLR S4s
A, B, C € CN/2 are initialized from HiPPO, C is trained
A initialized in (0.001,0.1), can be different per channel

Stack blocks with residual connections and apply per-block
LayerNorms or BatchNorms.

Concatenate forward and backward passes for bidirectional
representation (e.g. in classification)
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Speech

Table 7.3: (Speech Commands classification.) Test accuracy on 10- or 35- way keyword spotting.
(MFCC') Training on MFCC-processed features (length 161). (16k) Training examples are 1-second
audio waveforms sampled at 16000Hz, i.e. a 1 channel sequence of length 16000. (8k) Sampling rate
change: 0-shot testing at 8000Hz where examples are constructed by naive decimation. X denotes
not applicable or computationally infeasible on single GPU.

(a) (SC10 subset.) Transformer, NODE, (b) (Full dataset.) S4 (DPLR and Diag) variants, and
RNN, CNN, and SSM models. a collection of CNN baselines.
MFCC 16k Hz 8k Hz Model Param. 16000Hz 8000H:
g“??“‘”mer gg’;':’ gﬂ - )3(0 o S4-LegS 307K 96.08 (0.15)  91.32 (0.17)
ertormer -89 : b S4-FouT 307K 9527 (0.20)  91.59 (0.23)
835’]3\“\1 ggg ’1( 1o ’1‘5 5 S4DLegS 306K  95.83 (0.14) 9108 (0.16)
- - : S4D-Iny 306K 96.18 (0.27)  91.80 (0.24)
UniCORNN ~ 90.64  11.02  11.07 S4D-Lin 306K 96.25 (0.03) 91.58 (0.33)
ExpRNN 8213 116 108 InceptionNet 481K 61.24 (0.69)  05.18 (0.07)
CKConv 95.3 71.66  65.96 ResNet-18 216K 77.86 (0.24)  08.74 (0.57)
WaveGAN-D X 9625 X XResNet-50 904K 83.01 (0.48)  07.72 (0.39)
51 98.32  96.30 ConvNet 262M  95.51 (0.18)  07.26 (0.79)
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Time Series Regression

Table 7.2: (BIDMC Vital signs prediction.) RMSE (std.) for predicting respiratory rate (RR),
heart rate (HR), and blood oxygen (SpO2). (Top) S4. (Middle) Deep learning baselines. (Bottom)
Other popular machine learning methods for time series. Citations indicate reported numbers from
prior work.

Model HR RR SpO2

S4 0.332 (0.013) 0.247 (0.062) 0.090 (0.006)
S4-FouT 0.339 (0.020)  0.301 (0.030)  0.068 (0.003)
S4D-LegS 0.367 (0.001)  0.248 (0.036)  0.102 (0.001)
S4D-Inv 0.373 (0.024)  0.254 (0.022)  0.110 (0.001)
S4D-Lin 0.379 (0.006)  0.226 (0.008)  0.114 (0.003)
UnICORNN [175] 1.39 1.06 0.869
coRNN [175] 1.81 145 -

CKConv 2.05 1.214 1.051
NRDE [110] 2.97 1.49 1.29

LSTM [175] 10.7 228 :
Transformer 12.2 2.61 3.02
XGBoost [199] 472 1.67 1.52
Random Forest [199]  5.69 1.85 1.74

Ridge Regress. [199]  17.3 3.86 4.16
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Long Range Arena

Table 7.4: (Long Range Arena.) Test accuracy on full suite of LRA tasks. Hyperparameter
in Appendix G.1.2 X denotes failure to learn better than random guessing, following conventio:
from Tay et al. [202]. (Top) Original Transformer variants in LRA [202]. (Middle) Other model
reported in the literature. (Bottom) S4 variants.

Model ListTOps TEXT RETRIEVAL IMAGE PATHFINDER PATH-X  Ava

Random 10.00 50.00  50.00 10.00  50.00 50.00 36.67
Transformer 36.37 64.27  57.46 42.44 71.40 X 53.66
Local Attention  15.82 52.98  53.39 41.46 66.63 X 46.71
Sparse Trans. 17.07 63.58  59.59 44.24 71.71 X 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 X 52.88
Linformer 35.70 53.94  52.27 38.56 76.34 X 51.14
Reformer 37.27 56.10  53.40 38.07  68.50 X 50.56
Sinkhorn Trans.  33.67 61.20  53.83 41.23 67.45 X 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 X 52.40
BigBird 36.05 64.02  59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90  53.09 42.34 75.30 X 50.46
Performer 18.01 65.40  53.82 42.77 77.05 X 51.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nystromformer — 37.15 65.52 79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57  79.29 47.38 77.72 X 59.37
S4D-Rand 60.08 86.93  90.39 83.80  91.12 95.70 84.67
S4D-Lin 60.76 87.36  90.66 89.21 95.52 97.26 86.80
S4D-Inv 60.36 87.47  90.62 88.57 94.98 97.37 86.56
S4D-LegS 60.99 87.34  90.65 89.04  95.35 97.33 86.78
S4-Rand 60.46 87.94  90.87 84.59  91.57 95.59 85.17
S4-FouT 61.21 86.72  90.47 89.18 95.68 X 78.88
S4(-LegS) 60.86 88.73 91.14 89.49 95.76 97.32 87.22
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Long Range Arena: PathX Task

Figure 7.1: Visualizations of a trained S4 model on LRA Path-X. SSM convolution kernels K €
R6384 are reshaped into a 128 x 128 image. (Left) Example from the Path-X task, which involves
deducing if the markers are connected by a path (Top) Filters from the first layer (Bottom) Filters
from the last layer.
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WikiText-103 Language Modeling

Table 7.7: (WikiText-103 language modeling.) S4 approaches the performance of Transformers
with much faster generation. (7op) Transformer baseline which our implementation is based on,
with attention replaced by S4. (Bottom) Attention-free models (RNNs and CNNs).

Model

Params  Test ppl.

Tokens / sec. (throughput)

Transformer [3]

247TM 20.51

0.8K (1x)

GLU CNN [35] 220M  37.2
AWD-QRNN [137] 151M 33.0
LSTM + Cache + Hebbian + MbPA [169] - 29.2
TrellisNet [12] 180M  29.19
Dynamic Convolution [227 2556M 25.0
TaLLK Convolution [126] 240M 23.3

S4

249M 20.95

48K (60x)
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Computational Complexity

Table 7.8: SSSMs: S4 (with Algorithm 1) is asymp- Table 7.9: Benchmarks vs. Transformers
totically more efficient than a naive SSM.

LenGTu 1024 LencTo 4096

TRAINING STEP (MS) MEMORY ArLoc. (MB)
Dim. 128 256 512 128 256 512 Transformer

Speed  Mem.  Speed  Mem.

1x 1x 1x 1x
SSSM 9.32 20.6  140.7 222.1 1685 13140 Performer 1.23x  043x  3.79x  0.086x
S4 477 3.07 475 5.3 126 33.5 Linear Trans. 1.58x 0.37x 5.35x  0.067x
Ratio 1.9x 6.7x 29.6x 42.0x 133x 392X S4 1.58x 0.43x  5.19x  0.091x
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Discussion

S4s are a promising sequence processing paradigm, excelling at signal
processing

The language domain is quite specific because of the language nature
being far from physical process

Transformer still excel because of their selectivity

@ This is an ongoing research with promising results, e.g. Mamba
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