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What are Linear State Space Models?

Linear State Space Models (SSMs) are classical models in
engineering, signal processing, finance, neuroscience, etc.

Operate with finite-dimensional state vectors x(t) and input (or
control) vectors u(t) (the discrete version is defined analogously):

ẋ = A(t)x(t) + B(t)u(t)

y = C (t)x(t) + D(t)u(t)

where ẋ , x(t) ∈ Cd , u(t) ∈ Cn, y ∈ Cm and A,B,C ,D are conformable.
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What are Linear State Space Models?

∫
xẋ

A

+
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+u
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+

By integrating ẋ over time we obtain a trajectory of x . In practice most of
SSMs describe Linear Time Invariant (LTI) systems with fixed matrices.
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SSMs in Engineering: from linear ODE

SSMs are an essence of the modern control theory.

Linear ODE systems or rational transfer functions allow to
immediately write a corresponding SSM.

First example: damped mass-spring system.

m

my ′′ + cy ′ + ky = r(t)

define:

x =
[

y y ′
]T

u = r

A =

[
0 1

− k
m − c

m

]
B =

[
0
1
m

]

C =
[

1 0
]

D = 0

then

ẋ = Ax(t) + Bu(t), y(t) = Cx
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SSMs in Engineering: from rational transfer function

Sometimes a transfer function can be given as a system description.

Rational transfer functions correspond to linear ODEs in terms of
input and output derivatives.

H(s) =
N(s)

D(s)
=

bn−1s
n−1 + bn−2s

n−2 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

A =




−an−1 −an−2 . . . −a0
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




B =




1
0
...
0




C =
[

bn−1 bn−2 . . . b0
]

D = 0
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SSMs in Neuroscience

Instead of real-valued signals neuroscientists deal with spike trains.

Decoding them is implemented via filtering, thus neuroscience
extensively uses signal processing toolkit.

For example, lots of biological systems are integrators of some kind
(e.g. eye positioning).

SSMs are a convenient tool to describe these processes.
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Let’s train a SSM!

The simple definition suggests to simply plug randomly initialized
A,B,C ,D into a gradient learner.

Indeed we can do so, but the results will not be miraculous...

Flattened permuted MNIST results:
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Interlude 1: Laplace Transform

Laplace transform is the most essential integral transform in engineering.

Defined as L[f ] =
∫∞
0 f (t)e−stdt = F (s), invertible for many

functions.

Linear, L[f ∗ g ] = L[f ]L[g ], L[f ′] = sF (s)− f (0).

The latter shows that linear ODEs in time domain correspond to
polynomials in Laplace domain.

The ratio of Laplace transforms of output and input is called transfer
function.
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Interlude 1: Laplace Transform

Theorem: a transfer function can be converted into a SSM iff it can be
written as a proper (numerator degree ≤ denominator degree) rational
function.

Intuitively, to compute higher order derivatives we need more
information.

Higher order of the numerator of the improper function thus
corresponds to a larger necessary amount of information than
provided by input.

It makes the system non-causal, i.e. the output at time t depends on
the input at time τ > t.
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Key takeaways so far

Many dynamical systems can be described by LTIs
ẋ = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

SSM equations can be obtained from transfer functions, but they
need to be rational and proper.

Transfer function is a ratio of an output and input Laplace transforms.

Laplace transform is intimately connected with ODEs describing the
system.

Good deep learning models cannot be näıvely built with randomly
initialized SSMs :(
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Legendre Memory Units

Consider a task of implementing a continuous delay h(t) = f (t − θ)
by θ units.

The task is a prototype for studying dynamical properties of neural
computers in neuroscience.

Has no solution in terms of a finite polynomial basis.

t

f (t)

f (t)

f (t − θ)
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Legendre Memory Units

The corresponding transfer function is L[f (t−θ)]
L[f (t)] = e−θs .

It is not rational, so it needs an approximation.

The authors leverage Padé approximants for e−θs and perform an
extensive trickery to make it numerically stable.

Even more trickery they use to derive the decoding for delays θ′ < θ
from the model for θ.

We defer to the outstanding Aaron Voelker’s PhD thesis for a detailed
derivation in References.
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Legendre Memory Units

They arrive to the following SSM:

θṁ(t) = Am(t) + Bu(t)

where

A ∈ Rn×n,Aij = (2i + 1)

{
−1 i < j

(−1)i−j+1 i ≥ j

B ∈ Rn×1,Bi = (2i + 1)(−1)i i , j ∈ 0, . . . , n − 1
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Legendre Memory Units

An intriguing result is that the state represents the sliding window as
coefficients in the basis of the first n Legendre polynomials:

f (t − θ′) ≈ Σn−1
k=0 P̃k

(
θ′

θ

)
mk(t)

where P̃k is the kth shifted Legendre polynomial.

Legendre polynomials are orthogonal, thus the resulting
representation is unique and optimal (in L2 sense).
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Legendre Memory Units

0 0.2 0.4 0.6 0.8 1
−1

0

1

First 11 shifted Legendre polynomials and an example function
decomposition in the Legendre basis.
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Interlude 2: Discretization

So far we’ve been talking about continuous time models.

They provide a powerful framework for analysis, but virtually all the
data we are working with are discrete.

Thus for putting them into practice we need to discretize the
obtained equations.
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Interlude 2: Discretization

The simplest method is the forward Euler:

xt+1 = xk +∆(Axt + But) = (I +∆A)xt +∆But = Āxt + B̄ut

However, it’s unstable and its value is mostly illustrative. The commonly
used methods are:

ZOH : Ā = e∆A, B̄ = (∆A)−1(e∆A − I )∆B

Trapezoid: Ā = (I −∆A/2)−1(I +∆A/2), B̄ = (I −∆A/2)−1∆B

where ∆ is some scalar time step.
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Interlude 2: Discretization

Discretization methods illustrated.
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Legendre Memory Units: A Neural Network Module

The LMU layer resembles the
LSTM cell.

mt acts as a cell state and
follows the derived SSM.

The cell had shown unprecedented results, modeling sequences up to 1B
long in some setups, and can be implemented on neuromorphic HW.
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Key takeaways so far (2)

Imposing a structure on transition matrix A and input projection B
can provide SSM with special abilities and interpretation.

We have seen an example of such model derived from a task of
implementing a continuous delay.

SSM can be used as a part of a more general neural network module.
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HiPPO: High-Order Polynomial Projection Operator

The following two sections are adapted from the Albert Gu PhD thesis.

Assume a more general problem setup:

Consider the task of online function approximation of f : R+ → R
We evaluate the approximation w.r.t some measure µ.

The measure places a weight on different parts of the past.

The measure is also time-dependent µ = µ(t) supported on (−∞, t].
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HiPPO: High-Order Polynomial Projection Operator

A natural basis for the task is a set of polynomials (OPs) orthogonal
w.r.t. the measure:

Pi ,Pk : ⟨Pi ,Pk⟩µ(t) =

∫ b

a
PiPkdµ

(t) = δik

µ(t) > 0; a, b ∈ R ∪ {−∞,∞}

Then the coefficients of the basis are simply c
(t)
n = ⟨f ,Pk⟩µ(t) .

Furthermore, differentiating by t through integral will often lead to cn
evolving in time: d

dt cn = function of [ck(t)k∈[N]]
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HiPPO: High-Order Polynomial Projection Operator

Given a finite basis G of the first N OPs, HiPPO is a
composition of the two operators:

projt : projects f to a polynomial in the span of G.
coeft : returns the coefficients of the polynomial in
terms of G.

It can be shown, that c(t) = [c0(t), . . . , cn(t)]
T follow

an ODE c ′(t) = A(t)c(t) + B(t)f (t).
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HiPPO: High-Order Polynomial Projection Operator
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Example HiPPO Instances

Different measures lead to models with different capabilities:

LegT: uniform measure on [t − θ, t]. Leads to the LMU up to
rescaling.

LegS: uniform measure on [0, t] with state equations:

Ānk =





−(2n + 1)1/2(2k + 1)1/2, n > k

n + 1, n = k

0, n < k

B̄n = (2n + 1)1/2

LegS discretization is scale-equivariant, which allows to get rid of the ∆.
It also has gradients bounded from both sides and can be discretized in
O(N) steps by any method unlike LegT.
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Example HiPPO Instances: LegT Results
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HiPPO Generalization

The HiPPO framework can be generalized from OPs to any set of
orthonormal functions. An example model is FouT derived around
truncated Fourier basis:

Due to Fourier basis
approximates delay better than
LegT.

Ank =





−2, n = k = 0

−2
√
2, n = 0, k is odd

−2
√
2, k = 0, n is odd

−4, n, k odd

2πk , n − k = 1, k odd

−2πn, k − n = 1, n odd

0, otherwise

Bn =





2, n = 0

2
√
2, n odd

0, otherwise
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Key takeaways so far (3)

We consider a task of online function approximation

We can weight our past by different positive measures µ(t)

HiPPO is a framework how to obtain state space matrices
corresponding to these measures

It has a strong foundation on lingebraic and approximation theory

But tells nothing how to compute them fast :(
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The Threefold View on SSMs

Assume we are given some A,B, trainable C and D = 0 (e.g. HiPPO).

What kind of model do we have for discrete inputs?

SSMs are all of:

1 Continuous-time model

2 Recurrent model

3 Convolutional model
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The Threefold View on SSMs

SSM is a continous model by definition. What are other interpretations?

Recurrent view reveals some intricate connections to RNNs:

Gated recurrence is a backwards-Euler discretization of ẋ = −x + u.
Stacked SSMs with p.w. nonlinearities approximate ẋ = −x + f (t, x).

Convolutional view provides us with a faster way to compute output
through a discrete convolution:

y = u ∗ K̄ , K̄ = (CB̄,CĀB̄, . . . ,CĀk B̄, . . . )

This can be done with FFT, but computing the kernel is a massive
computational challenge on its own.
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Structured State Spaces

So far we have only addressed the modeling challenge.

As we see, SSMs pose a computational challenge as well. What can
we try?

Conjugates are equivalent: (A,B,C ) ∼ (V−1AV ,V−1B,CV )

Two main techniques:

Diagonalization
Normal Plus Low Rank (DPLR)
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Structured State Spaces: Diagonalization

✓Easy powering, fast recurrent steps.

✓Diagonalizable matrices are dense in complex.

For HiPPO entries of V grow exponentially in N :(
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Structured State Spaces: Normal Plus Low Rank

Normal matrix is diagonalizable by unitary V .

✓Main HiPPO matrices can be decomposed in such way.

✓Much faster to compute than original SSM.

Restrictive class.

Requires lingebraic computational trickery for implementation.
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Structured State Spaces: Taking best of two worlds

It appears, that by removing the ”low rank” portion from DPLR from
LegS can yield a good approximation (named S4-LegS).

Empirically it’s slightly worse than LegS

For other HiPPOs it doesn’t work, nonetheless there exist other
diagonal approximations.

However, due to its properties S4-LegS can be considered as a
”default” or ”original” SSM for application.
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Key takeaways so far (4)

HiPPO and Structured State Space Models (S4) are two different
approaches to two different problems.

Their intersection is mostly diagonal approximations of HiPPO or
diagonal-plus-low-rank HiPPO decompositions.

Diagonal or DPLR structure allows to compute both recurrent and
convolutional passes extremely fast.

Uladzislau Yorsh Structured State Space Models KTIML UK 36 / 44



General Setup

Consider diagonal and DPLR S4s

A,B,C ∈ CN/2 are initialized from HiPPO, C is trained

∆ initialized in (0.001, 0.1), can be different per channel

Stack blocks with residual connections and apply per-block
LayerNorms or BatchNorms.

Concatenate forward and backward passes for bidirectional
representation (e.g. in classification)
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Speech
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Time Series Regression
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Long Range Arena
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Long Range Arena: PathX Task
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WikiText-103 Language Modeling
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Computational Complexity
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Discussion

S4s are a promising sequence processing paradigm, excelling at signal
processing

The language domain is quite specific because of the language nature
being far from physical process

Transformer still excel because of their selectivity

This is an ongoing research with promising results, e.g. Mamba
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